48 lines
1.4 KiB
Python
Executable File
48 lines
1.4 KiB
Python
Executable File
import argparse
|
|
|
|
import torch
|
|
import torch.nn
|
|
|
|
from .data import get_phone_symmap
|
|
from .engines import load_engines
|
|
from .config import cfg
|
|
from .models.lora import lora_get_state_dict
|
|
|
|
def extract_lora( state_dict, config = None, save_path = None ):
|
|
lora = state_dict["lora"] if "lora" in state_dict else None
|
|
# should always be included, but just in case
|
|
if lora is None and "module" in state_dict:
|
|
lora, module = lora_get_state_dict( state_dict["module"], split = True )
|
|
state_dict["module"] = module
|
|
state_dict["lora"] = lora
|
|
|
|
# should raise an exception since there's nothing to extract, or at least a warning
|
|
if not lora:
|
|
return state_dict
|
|
|
|
# save lora specifically
|
|
# should probably export other attributes, similar to what SD LoRAs do
|
|
save_path = save_path.parent / "lora.pth"
|
|
torch.save( { "module": lora }, save_path )
|
|
|
|
return state_dict
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser("Save trained model to path.")
|
|
parser.add_argument("--module-only", action='store_true')
|
|
parser.add_argument("--lora", action='store_true', default=None) # exports LoRA
|
|
args, unknown = parser.parse_known_args()
|
|
|
|
if args.module_only:
|
|
cfg.trainer.load_module_only = True
|
|
|
|
callback = None
|
|
if args.lora:
|
|
callback = extract_lora
|
|
|
|
engines = load_engines()
|
|
engines.export(userdata={"symmap": get_phone_symmap()}, callback=callback)
|
|
|
|
if __name__ == "__main__":
|
|
main() |