222 lines
11 KiB
Python
222 lines
11 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
from urllib import request
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
import progressbar
|
|
|
|
from models.diffusion_decoder import DiffusionTts
|
|
from models.autoregressive import UnifiedVoice
|
|
from tqdm import tqdm
|
|
|
|
from models.arch_util import TorchMelSpectrogram
|
|
from models.text_voice_clip import VoiceCLIP
|
|
from models.vocoder import UnivNetGenerator
|
|
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
|
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
|
from utils.tokenizer import VoiceBpeTokenizer
|
|
|
|
pbar = None
|
|
def download_models():
|
|
MODELS = {
|
|
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
|
|
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
|
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
|
|
}
|
|
os.makedirs('.models', exist_ok=True)
|
|
def show_progress(block_num, block_size, total_size):
|
|
global pbar
|
|
if pbar is None:
|
|
pbar = progressbar.ProgressBar(maxval=total_size)
|
|
pbar.start()
|
|
|
|
downloaded = block_num * block_size
|
|
if downloaded < total_size:
|
|
pbar.update(downloaded)
|
|
else:
|
|
pbar.finish()
|
|
pbar = None
|
|
for model_name, url in MODELS.items():
|
|
if os.path.exists(f'.models/{model_name}'):
|
|
continue
|
|
print(f'Downloading {model_name} from {url}...')
|
|
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
|
print('Done.')
|
|
|
|
|
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200):
|
|
"""
|
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
|
"""
|
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
|
conditioning_free=True, conditioning_free_k=1)
|
|
|
|
|
|
def load_conditioning(path, sample_rate=22050, cond_length=132300):
|
|
rel_clip = load_audio(path, sample_rate)
|
|
gap = rel_clip.shape[-1] - cond_length
|
|
if gap < 0:
|
|
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
|
elif gap > 0:
|
|
rand_start = random.randint(0, gap)
|
|
rel_clip = rel_clip[:, rand_start:rand_start + cond_length]
|
|
mel_clip = TorchMelSpectrogram()(rel_clip.unsqueeze(0)).squeeze(0)
|
|
return mel_clip.unsqueeze(0).cuda(), rel_clip.unsqueeze(0).cuda()
|
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token):
|
|
"""
|
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
|
trained on and what the autoregressive code generator creates (which has no padding or end).
|
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
|
and copying out the last few codes.
|
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
|
"""
|
|
# Strip off the autoregressive stop token and add padding.
|
|
stop_token_indices = (codes == stop_token).nonzero()
|
|
if len(stop_token_indices) == 0:
|
|
print("No stop tokens found, enjoy that output of yours!")
|
|
return
|
|
else:
|
|
codes[stop_token_indices] = 83
|
|
stm = stop_token_indices.min().item()
|
|
codes[stm:] = 83
|
|
if stm - 3 < codes.shape[0]:
|
|
codes[-3] = 45
|
|
codes[-2] = 45
|
|
codes[-1] = 248
|
|
|
|
return codes
|
|
|
|
|
|
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, mean=False):
|
|
"""
|
|
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
|
"""
|
|
with torch.no_grad():
|
|
cond_mel = wav_to_univnet_mel(conditioning_input.squeeze(1), do_normalization=False)
|
|
# Pad MEL to multiples of 32
|
|
msl = mel_codes.shape[-1]
|
|
dsl = 32
|
|
gap = dsl - (msl % dsl)
|
|
if gap > 0:
|
|
mel = torch.nn.functional.pad(mel_codes, (0, gap))
|
|
|
|
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
|
|
if mean:
|
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
|
|
model_kwargs={'aligned_conditioning': mel_codes, 'conditioning_input': cond_mel})
|
|
else:
|
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'aligned_conditioning': mel_codes, 'conditioning_input': cond_mel})
|
|
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
|
# has shown that the model does not generalize to new voices very well.
|
|
preselected_cond_voices = {
|
|
# Male voices
|
|
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
|
|
'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],
|
|
'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],
|
|
'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],
|
|
# Female voices
|
|
'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],
|
|
'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],
|
|
'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],
|
|
'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],
|
|
}
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
|
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
|
|
parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
|
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
|
args = parser.parse_args()
|
|
|
|
os.makedirs(args.output_path, exist_ok=True)
|
|
download_models()
|
|
|
|
for voice in args.voice.split(','):
|
|
print("Loading data..")
|
|
tokenizer = VoiceBpeTokenizer()
|
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
|
text = F.pad(text, (0,1)) # This may not be necessary.
|
|
cond_paths = preselected_cond_voices[voice]
|
|
conds = []
|
|
for cond_path in cond_paths:
|
|
c, cond_wav = load_conditioning(cond_path)
|
|
conds.append(c)
|
|
conds = torch.stack(conds, dim=1)
|
|
cond_diffusion = cond_wav[:, :88200] # The diffusion model expects <= 88200 conditioning samples.
|
|
|
|
print("Loading GPT TTS..")
|
|
autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,
|
|
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False,
|
|
average_conditioning_embeddings=True).cuda().eval()
|
|
autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
|
stop_mel_token = autoregressive.stop_mel_token
|
|
|
|
with torch.no_grad():
|
|
print("Performing autoregressive inference..")
|
|
samples = []
|
|
for b in tqdm(range(args.num_batches)):
|
|
codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
|
|
temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
|
|
padding_needed = 250 - codes.shape[1]
|
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
|
samples.append(codes)
|
|
del autoregressive
|
|
|
|
print("Loading CLIP..")
|
|
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
|
|
num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()
|
|
clip.load_state_dict(torch.load('.models/clip.pth'))
|
|
print("Performing CLIP filtering..")
|
|
clip_results = []
|
|
for batch in samples:
|
|
for i in range(batch.shape[0]):
|
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
|
text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.
|
|
clip_results.append(clip(text.repeat(batch.shape[0], 1),
|
|
torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
|
|
batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),
|
|
return_loss=False))
|
|
clip_results = torch.cat(clip_results, dim=0)
|
|
samples = torch.cat(samples, dim=0)
|
|
best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices]
|
|
|
|
# Delete the autoregressive and clip models to free up GPU memory
|
|
del samples, clip
|
|
|
|
print("Loading Diffusion Model..")
|
|
diffusion = DiffusionTts(model_channels=512, in_channels=100, out_channels=200, in_latent_channels=1024,
|
|
channel_mult=[1, 2, 3, 4], num_res_blocks=[3, 3, 3, 3], token_conditioning_resolutions=[1,4,8],
|
|
dropout=0, attention_resolutions=[4,8], num_heads=8, kernel_size=3, scale_factor=2,
|
|
time_embed_dim_multiplier=4, unconditioned_percentage=0, conditioning_dim_factor=2,
|
|
conditioning_expansion=1)
|
|
diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
|
diffusion = diffusion.cuda().eval()
|
|
print("Loading vocoder..")
|
|
vocoder = UnivNetGenerator()
|
|
vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
|
vocoder = vocoder.cuda()
|
|
vocoder.eval(inference=True)
|
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)
|
|
|
|
print("Performing vocoding..")
|
|
# Perform vocoding on each batch element separately: The diffusion model is very memory (and compute!) intensive.
|
|
for b in range(best_results.shape[0]):
|
|
code = best_results[b].unsqueeze(0)
|
|
mel = do_spectrogram_diffusion(diffusion, diffuser, code, cond_diffusion, mean=False)
|
|
wav = vocoder.inference(mel)
|
|
torchaudio.save(os.path.join(args.output_path, f'{voice}_{b}.wav'), wav.squeeze(0).cpu(), 24000)
|