386 lines
15 KiB
Python
Executable File
386 lines
15 KiB
Python
Executable File
import os
|
|
import argparse
|
|
import gradio as gr
|
|
import torch
|
|
import torchaudio
|
|
import time
|
|
import json
|
|
import base64
|
|
|
|
from datetime import datetime
|
|
from tortoise.api import TextToSpeech
|
|
from tortoise.utils.audio import load_audio, load_voice, load_voices
|
|
from tortoise.utils.text import split_and_recombine_text
|
|
|
|
import music_tag
|
|
|
|
def generate(text, delimiter, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, diffusion_sampler, breathing_room, experimentals, progress=gr.Progress()):
|
|
if voice != "microphone":
|
|
voices = [voice]
|
|
else:
|
|
voices = []
|
|
|
|
if voice == "microphone":
|
|
if mic_audio is None:
|
|
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
|
|
mic = load_audio(mic_audio, 22050)
|
|
voice_samples, conditioning_latents = [mic], None
|
|
else:
|
|
progress(0, desc="Loading voice...")
|
|
voice_samples, conditioning_latents = load_voice(voice)
|
|
|
|
if voice_samples is not None:
|
|
sample_voice = voice_samples[0]
|
|
conditioning_latents = tts.get_conditioning_latents(voice_samples, progress=progress, max_chunk_size=args.cond_latent_max_chunk_size)
|
|
if voice != "microphone":
|
|
torch.save(conditioning_latents, os.path.join(f'./tortoise/voices/{voice}/', f'cond_latents.pth'))
|
|
voice_samples = None
|
|
else:
|
|
sample_voice = None
|
|
|
|
if seed == 0:
|
|
seed = None
|
|
|
|
print(conditioning_latents)
|
|
|
|
start_time = time.time()
|
|
|
|
settings = {
|
|
'temperature': temperature, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
|
'top_p': .8,
|
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0,
|
|
|
|
'num_autoregressive_samples': num_autoregressive_samples,
|
|
'diffusion_iterations': diffusion_iterations,
|
|
|
|
'voice_samples': voice_samples,
|
|
'conditioning_latents': conditioning_latents,
|
|
'use_deterministic_seed': seed,
|
|
'return_deterministic_state': True,
|
|
'k': candidates,
|
|
'diffusion_sampler': diffusion_sampler,
|
|
'breathing_room': breathing_room,
|
|
'progress': progress,
|
|
'half_p': "Half Precision" in experimentals,
|
|
'cond_free': "Conditioning-Free" in experimentals,
|
|
}
|
|
|
|
if delimiter == "\\n":
|
|
delimiter = "\n"
|
|
|
|
if delimiter != "" and delimiter in text:
|
|
texts = text.split(delimiter)
|
|
else:
|
|
texts = split_and_recombine_text(text)
|
|
|
|
|
|
timestamp = int(time.time())
|
|
outdir = f"./results/{voice}/{timestamp}/"
|
|
|
|
os.makedirs(outdir, exist_ok=True)
|
|
|
|
|
|
audio_cache = {}
|
|
for line, cut_text in enumerate(texts):
|
|
if emotion == "Custom" and prompt.strip() != "":
|
|
cut_text = f"[{prompt},] {cut_text}"
|
|
elif emotion != "None":
|
|
cut_text = f"[I am really {emotion.lower()},] {cut_text}"
|
|
|
|
print(f"[{str(line+1)}/{str(len(texts))}] Generating line: {cut_text}")
|
|
|
|
gen, additionals = tts.tts(cut_text, **settings )
|
|
seed = additionals[0]
|
|
|
|
if isinstance(gen, list):
|
|
for j, g in enumerate(gen):
|
|
audio = g.squeeze(0).cpu()
|
|
audio_cache[f"candidate_{j}/result_{line}.wav"] = {
|
|
'audio': audio,
|
|
'text': cut_text,
|
|
}
|
|
|
|
os.makedirs(os.path.join(outdir, f'candidate_{j}'), exist_ok=True)
|
|
torchaudio.save(os.path.join(outdir, f'candidate_{j}/result_{line}.wav'), audio, 24000)
|
|
else:
|
|
audio = gen.squeeze(0).cpu()
|
|
audio_cache[f"result_{line}.wav"] = {
|
|
'audio': audio,
|
|
'text': cut_text,
|
|
}
|
|
torchaudio.save(os.path.join(outdir, f'result_{line}.wav'), audio, 24000)
|
|
|
|
output_voice = None
|
|
if len(texts) > 1:
|
|
for candidate in range(candidates):
|
|
audio_clips = []
|
|
for line in range(len(texts)):
|
|
if isinstance(gen, list):
|
|
audio = audio_cache[f'candidate_{candidate}/result_{line}.wav']['audio']
|
|
else:
|
|
audio = audio_cache[f'result_{line}.wav']['audio']
|
|
audio_clips.append(audio)
|
|
audio_clips = torch.cat(audio_clips, dim=-1)
|
|
torchaudio.save(os.path.join(outdir, f'combined_{candidate}.wav'), audio_clips, 24000)
|
|
|
|
if output_voice is None:
|
|
output_voice = (24000, audio_clips.squeeze().cpu().numpy())
|
|
else:
|
|
if isinstance(gen, list):
|
|
output_voice = gen[0]
|
|
else:
|
|
output_voice = gen
|
|
output_voice = (24000, output_voice.squeeze().cpu().numpy())
|
|
|
|
info = {
|
|
'text': text,
|
|
'delimiter': '\\n' if delimiter == "\n" else delimiter,
|
|
'emotion': emotion,
|
|
'prompt': prompt,
|
|
'voice': voice,
|
|
'mic_audio': mic_audio,
|
|
'preset': preset,
|
|
'seed': seed,
|
|
'candidates': candidates,
|
|
'num_autoregressive_samples': num_autoregressive_samples,
|
|
'diffusion_iterations': diffusion_iterations,
|
|
'temperature': temperature,
|
|
'diffusion_sampler': diffusion_sampler,
|
|
'breathing_room': breathing_room,
|
|
'experimentals': experimentals,
|
|
'time': time.time()-start_time,
|
|
}
|
|
|
|
with open(os.path.join(outdir, f'input.txt'), 'w', encoding="utf-8") as f:
|
|
f.write(json.dumps(info, indent='\t') )
|
|
|
|
if voice is not None and conditioning_latents is not None:
|
|
with open(os.path.join(f'./tortoise/voices/{voice}/', f'cond_latents.pth'), 'rb') as f:
|
|
info['latents'] = base64.b64encode(f.read()).decode("ascii")
|
|
|
|
print(f"Saved to '{outdir}'")
|
|
|
|
|
|
for path in audio_cache:
|
|
info['text'] = audio_cache[path]['text']
|
|
|
|
metadata = music_tag.load_file(os.path.join(outdir, path))
|
|
metadata['lyrics'] = json.dumps(info)
|
|
metadata.save()
|
|
|
|
if sample_voice is not None:
|
|
sample_voice = (22050, sample_voice.squeeze().cpu().numpy())
|
|
|
|
audio_clips = []
|
|
return (
|
|
sample_voice,
|
|
output_voice,
|
|
seed
|
|
)
|
|
|
|
def update_presets(value):
|
|
PRESETS = {
|
|
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
|
|
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
|
|
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
|
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
|
}
|
|
|
|
if value in PRESETS:
|
|
preset = PRESETS[value]
|
|
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
|
|
else:
|
|
return (gr.update(), gr.update())
|
|
|
|
def read_metadata(file, save_latents=True):
|
|
j = None
|
|
latents = None
|
|
|
|
if file is not None:
|
|
metadata = music_tag.load_file(file.name)
|
|
if 'lyrics' in metadata:
|
|
j = json.loads(str(metadata['lyrics']))
|
|
|
|
if 'latents' in j and save_latents:
|
|
latents = base64.b64decode(j['latents'])
|
|
del j['latents']
|
|
|
|
if latents and save_latents:
|
|
outdir='/voices/.temp/'
|
|
os.makedirs(os.path.join(outdir), exist_ok=True)
|
|
with open(os.path.join(outdir, 'cond_latents.pth'), 'wb') as f:
|
|
f.write(latents)
|
|
latents = os.path.join(outdir, 'cond_latents.pth')
|
|
|
|
return (
|
|
j,
|
|
latents
|
|
)
|
|
|
|
def copy_settings(file):
|
|
metadata, latents = read_metadata(file, save_latents=False)
|
|
|
|
if metadata is None:
|
|
return None
|
|
|
|
return (
|
|
metadata['text'],
|
|
metadata['delimiter'],
|
|
metadata['emotion'],
|
|
metadata['prompt'],
|
|
metadata['voice'],
|
|
metadata['mic_audio'],
|
|
metadata['preset'],
|
|
metadata['seed'],
|
|
metadata['candidates'],
|
|
metadata['num_autoregressive_samples'],
|
|
metadata['diffusion_iterations'],
|
|
metadata['temperature'],
|
|
metadata['diffusion_sampler'],
|
|
metadata['breathing_room'],
|
|
metadata['experimentals'],
|
|
)
|
|
|
|
def update_voices():
|
|
return gr.Dropdown.update(choices=os.listdir(os.path.join("tortoise", "voices")) + ["microphone"])
|
|
|
|
def main():
|
|
with gr.Blocks() as webui:
|
|
with gr.Tab("Generate"):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
text = gr.Textbox(lines=4, label="Prompt")
|
|
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
|
|
|
|
emotion = gr.Radio(
|
|
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
|
|
value="None",
|
|
label="Emotion",
|
|
type="value",
|
|
interactive=True
|
|
)
|
|
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
|
|
voice = gr.Dropdown(
|
|
os.listdir(os.path.join("tortoise", "voices")) + ["microphone"],
|
|
label="Voice",
|
|
type="value",
|
|
)
|
|
mic_audio = gr.Audio(
|
|
label="Microphone Source",
|
|
source="microphone",
|
|
type="filepath",
|
|
)
|
|
refresh_voices = gr.Button(value="Refresh Voice List")
|
|
refresh_voices.click(update_voices,
|
|
inputs=None,
|
|
outputs=voice
|
|
)
|
|
|
|
prompt.change(fn=lambda value: gr.update(value="Custom"),
|
|
inputs=prompt,
|
|
outputs=emotion
|
|
)
|
|
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
|
|
inputs=mic_audio,
|
|
outputs=voice
|
|
)
|
|
with gr.Column():
|
|
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
|
|
seed = gr.Number(value=0, precision=0, label="Seed")
|
|
|
|
preset = gr.Radio(
|
|
["Ultra Fast", "Fast", "Standard", "High Quality", "None"],
|
|
value="None",
|
|
label="Preset",
|
|
type="value",
|
|
)
|
|
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
|
|
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
|
|
|
|
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
|
|
breathing_room = gr.Slider(value=12, minimum=1, maximum=32, step=1, label="Pause Size")
|
|
diffusion_sampler = gr.Radio(
|
|
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
|
|
value="P",
|
|
label="Diffusion Samplers",
|
|
type="value",
|
|
)
|
|
|
|
experimentals = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
|
|
|
|
preset.change(fn=update_presets,
|
|
inputs=preset,
|
|
outputs=[
|
|
num_autoregressive_samples,
|
|
diffusion_iterations,
|
|
],
|
|
)
|
|
with gr.Column():
|
|
selected_voice = gr.Audio(label="Source Sample")
|
|
output_audio = gr.Audio(label="Output")
|
|
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
|
|
|
|
submit = gr.Button(value="Generate")
|
|
#stop = gr.Button(value="Stop")
|
|
|
|
input_settings = [
|
|
text,
|
|
delimiter,
|
|
emotion,
|
|
prompt,
|
|
voice,
|
|
mic_audio,
|
|
preset,
|
|
seed,
|
|
candidates,
|
|
num_autoregressive_samples,
|
|
diffusion_iterations,
|
|
temperature,
|
|
diffusion_sampler,
|
|
breathing_room,
|
|
experimentals,
|
|
]
|
|
|
|
submit_event = submit.click(generate,
|
|
inputs=input_settings,
|
|
outputs=[selected_voice, output_audio, usedSeed],
|
|
)
|
|
|
|
#stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
|
|
with gr.Tab("Utilities"):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
audio_in = gr.File(type="file", label="Audio Input", file_types=["audio"])
|
|
copy_button = gr.Button(value="Copy Settings")
|
|
with gr.Column():
|
|
metadata_out = gr.JSON(label="Audio Metadata")
|
|
latents_out = gr.File(type="binary", label="Voice Latents")
|
|
|
|
audio_in.upload(
|
|
fn=read_metadata,
|
|
inputs=audio_in,
|
|
outputs=[
|
|
metadata_out,
|
|
latents_out
|
|
]
|
|
)
|
|
|
|
copy_button.click(copy_settings,
|
|
inputs=audio_in, # JSON elements cannt be used as inputs
|
|
outputs=input_settings
|
|
)
|
|
|
|
webui.queue().launch(share=args.share)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
|
|
parser.add_argument("--low-vram", action='store_true', help="Disables some optimizations that increases VRAM usage")
|
|
parser.add_argument("--cond-latent-max-chunk-size", type=int, default=1000000, help="Sets an upper limit to audio chunk size when computing conditioning latents")
|
|
args = parser.parse_args()
|
|
|
|
print("Initializating TorToiSe...")
|
|
tts = TextToSpeech(minor_optimizations=not args.low_vram)
|
|
|
|
main() |