684 lines
36 KiB
Python
Executable File
684 lines
36 KiB
Python
Executable File
import os
|
|
import random
|
|
import uuid
|
|
import gc
|
|
|
|
from time import time
|
|
from urllib import request
|
|
|
|
if 'TORTOISE_MODELS_DIR' not in os.environ:
|
|
os.environ['TORTOISE_MODELS_DIR'] = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/tortoise/')
|
|
|
|
if 'TRANSFORMERS_CACHE' not in os.environ:
|
|
os.environ['TRANSFORMERS_CACHE'] = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/transformers/')
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import progressbar
|
|
import torchaudio
|
|
|
|
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
|
from tortoise.models.diffusion_decoder import DiffusionTts
|
|
from tortoise.models.autoregressive import UnifiedVoice
|
|
from tqdm import tqdm
|
|
|
|
from tortoise.models.arch_util import TorchMelSpectrogram
|
|
from tortoise.models.clvp import CLVP
|
|
from tortoise.models.cvvp import CVVP
|
|
from tortoise.models.random_latent_generator import RandomLatentConverter
|
|
from tortoise.models.vocoder import UnivNetGenerator
|
|
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
|
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
|
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
|
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
|
|
|
from tortoise.utils.device import get_device, get_device_name, get_device_batch_size
|
|
|
|
pbar = None
|
|
|
|
STOP_SIGNAL = False
|
|
|
|
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR')
|
|
MODELS = {
|
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
|
|
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
|
|
'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth',
|
|
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth',
|
|
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
|
|
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
|
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
|
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
|
}
|
|
|
|
def tqdm_override(arr, verbose=False, progress=None, desc=None):
|
|
global STOP_SIGNAL
|
|
if STOP_SIGNAL:
|
|
STOP_SIGNAL = False
|
|
raise Exception("Kill signal detected")
|
|
|
|
if verbose and desc is not None:
|
|
print(desc)
|
|
|
|
if progress is None:
|
|
return tqdm(arr, disable=not verbose)
|
|
return progress.tqdm(arr, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True)
|
|
|
|
def download_models(specific_models=None):
|
|
"""
|
|
Call to download all the models that Tortoise uses.
|
|
"""
|
|
|
|
os.makedirs(MODELS_DIR, exist_ok=True)
|
|
|
|
def show_progress(block_num, block_size, total_size):
|
|
global pbar
|
|
if pbar is None:
|
|
pbar = progressbar.ProgressBar(maxval=total_size)
|
|
pbar.start()
|
|
|
|
downloaded = block_num * block_size
|
|
if downloaded < total_size:
|
|
pbar.update(downloaded)
|
|
else:
|
|
pbar.finish()
|
|
pbar = None
|
|
for model_name, url in MODELS.items():
|
|
if specific_models is not None and model_name not in specific_models:
|
|
continue
|
|
model_path = os.path.join(MODELS_DIR, model_name)
|
|
if os.path.exists(model_path):
|
|
continue
|
|
print(f'Downloading {model_name} from {url}...')
|
|
request.urlretrieve(url, model_path, show_progress)
|
|
print('Done.')
|
|
|
|
|
|
def get_model_path(model_name, models_dir=MODELS_DIR):
|
|
"""
|
|
Get path to given model, download it if it doesn't exist.
|
|
"""
|
|
if model_name not in MODELS:
|
|
raise ValueError(f'Model {model_name} not found in available models.')
|
|
model_path = os.path.join(models_dir, model_name)
|
|
if not os.path.exists(model_path) and models_dir == MODELS_DIR:
|
|
download_models([model_name])
|
|
return model_path
|
|
|
|
|
|
def pad_or_truncate(t, length):
|
|
"""
|
|
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
|
|
"""
|
|
if t.shape[-1] == length:
|
|
return t
|
|
elif t.shape[-1] < length:
|
|
return F.pad(t, (0, length-t.shape[-1]))
|
|
else:
|
|
return t[..., :length]
|
|
|
|
|
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
|
"""
|
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
|
"""
|
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
|
|
|
|
|
def format_conditioning(clip, cond_length=132300, device='cuda', sampling_rate=22050):
|
|
"""
|
|
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
|
|
"""
|
|
gap = clip.shape[-1] - cond_length
|
|
if gap < 0:
|
|
clip = F.pad(clip, pad=(0, abs(gap)))
|
|
elif gap > 0:
|
|
rand_start = random.randint(0, gap)
|
|
clip = clip[:, rand_start:rand_start + cond_length]
|
|
mel_clip = TorchMelSpectrogram(sampling_rate=sampling_rate)(clip.unsqueeze(0)).squeeze(0)
|
|
return mel_clip.unsqueeze(0).to(device)
|
|
|
|
|
|
def fix_autoregressive_output(codes, stop_token, complain=True):
|
|
"""
|
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
|
trained on and what the autoregressive code generator creates (which has no padding or end).
|
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
|
and copying out the last few codes.
|
|
|
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
|
"""
|
|
# Strip off the autoregressive stop token and add padding.
|
|
stop_token_indices = (codes == stop_token).nonzero()
|
|
if len(stop_token_indices) == 0:
|
|
if complain:
|
|
print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is "
|
|
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, "
|
|
"try breaking up your input text.")
|
|
return codes
|
|
else:
|
|
codes[stop_token_indices] = 83
|
|
stm = stop_token_indices.min().item()
|
|
codes[stm:] = 83
|
|
if stm - 3 < codes.shape[0]:
|
|
codes[-3] = 45
|
|
codes[-2] = 45
|
|
codes[-1] = 248
|
|
|
|
return codes
|
|
|
|
|
|
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True, progress=None, desc=None, sampler="P", input_sample_rate=22050, output_sample_rate=24000):
|
|
"""
|
|
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
|
"""
|
|
with torch.no_grad():
|
|
output_seq_len = latents.shape[1] * 4 * output_sample_rate // input_sample_rate # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
|
output_shape = (latents.shape[0], 100, output_seq_len)
|
|
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)
|
|
|
|
noise = torch.randn(output_shape, device=latents.device) * temperature
|
|
|
|
diffuser.sampler = sampler.lower()
|
|
mel = diffuser.sample_loop(diffusion_model, output_shape, noise=noise,
|
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
|
|
verbose=verbose, progress=progress, desc=desc)
|
|
|
|
mel = denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
|
if get_device_name() == "dml":
|
|
mel = mel.cpu()
|
|
return mel
|
|
|
|
|
|
def classify_audio_clip(clip):
|
|
"""
|
|
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
|
|
:param clip: torch tensor containing audio waveform data (get it from load_audio)
|
|
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
|
|
"""
|
|
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
|
|
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
|
|
dropout=0, kernel_size=5, distribute_zero_label=False)
|
|
classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu')))
|
|
clip = clip.cpu().unsqueeze(0)
|
|
results = F.softmax(classifier(clip), dim=-1)
|
|
return results[0][0]
|
|
|
|
class TextToSpeech:
|
|
"""
|
|
Main entry point into Tortoise.
|
|
"""
|
|
|
|
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, enable_redaction=True, device=None, minor_optimizations=True, input_sample_rate=22050, output_sample_rate=24000):
|
|
"""
|
|
Constructor
|
|
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
|
GPU OOM errors. Larger numbers generates slightly faster.
|
|
:param models_dir: Where model weights are stored. This should only be specified if you are providing your own
|
|
models, otherwise use the defaults.
|
|
:param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output
|
|
(but are still rendered by the model). This can be used for prompt engineering.
|
|
Default is true.
|
|
:param device: Device to use when running the model. If omitted, the device will be automatically chosen.
|
|
"""
|
|
if device is None:
|
|
device = get_device(verbose=True)
|
|
|
|
self.input_sample_rate = input_sample_rate
|
|
self.output_sample_rate = output_sample_rate
|
|
self.minor_optimizations = minor_optimizations
|
|
|
|
# for clarity, it's simpler to split these up and just predicate them on requesting VRAM-consuming optimizations
|
|
self.preloaded_tensors = minor_optimizations
|
|
self.use_kv_cache = minor_optimizations
|
|
if get_device_name() == "dml": # does not work with DirectML
|
|
print("KV caching requested but not supported with the DirectML backend, disabling...")
|
|
self.use_kv_cache = False
|
|
|
|
self.models_dir = models_dir
|
|
self.autoregressive_batch_size = get_device_batch_size() if autoregressive_batch_size is None or autoregressive_batch_size == 0 else autoregressive_batch_size
|
|
self.enable_redaction = enable_redaction
|
|
self.device = device
|
|
if self.enable_redaction:
|
|
self.aligner = Wav2VecAlignment(device='cpu' if get_device_name() == "dml" else self.device)
|
|
|
|
self.tokenizer = VoiceBpeTokenizer()
|
|
|
|
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
|
# Assume this is a traced directory.
|
|
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
|
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
|
else:
|
|
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
|
model_dim=1024,
|
|
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
|
train_solo_embeddings=False).cpu().eval()
|
|
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)))
|
|
self.autoregressive.post_init_gpt2_config(kv_cache=self.use_kv_cache)
|
|
|
|
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
|
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
|
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
|
self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir)))
|
|
|
|
|
|
self.clvp = CLVP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20,
|
|
text_seq_len=350, text_heads=12,
|
|
num_speech_tokens=8192, speech_enc_depth=20, speech_heads=12, speech_seq_len=430,
|
|
use_xformers=True).cpu().eval()
|
|
self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
|
|
self.cvvp = None # CVVP model is only loaded if used.
|
|
|
|
self.vocoder = UnivNetGenerator().cpu()
|
|
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
|
self.vocoder.eval(inference=True)
|
|
|
|
# Random latent generators (RLGs) are loaded lazily.
|
|
self.rlg_auto = None
|
|
self.rlg_diffusion = None
|
|
|
|
if self.preloaded_tensors:
|
|
self.autoregressive = self.autoregressive.to(self.device)
|
|
self.diffusion = self.diffusion.to(self.device)
|
|
self.clvp = self.clvp.to(self.device)
|
|
self.vocoder = self.vocoder.to(self.device)
|
|
|
|
def load_cvvp(self):
|
|
"""Load CVVP model."""
|
|
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
|
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
|
self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir)))
|
|
|
|
if self.preloaded_tensors:
|
|
self.cvvp = self.cvvp.to(self.device)
|
|
|
|
def get_conditioning_latents(self, voice_samples, return_mels=False, verbose=False, progress=None, slices=1, max_chunk_size=None, force_cpu=False):
|
|
"""
|
|
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
|
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
|
|
properties.
|
|
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
|
|
"""
|
|
with torch.no_grad():
|
|
# computing conditional latents requires being done on the CPU if using DML because M$ still hasn't implemented some core functions
|
|
if get_device_name() == "dml":
|
|
force_cpu = True
|
|
device = torch.device('cpu') if force_cpu else self.device
|
|
|
|
if not isinstance(voice_samples, list):
|
|
voice_samples = [voice_samples]
|
|
|
|
voice_samples = [v.to(device) for v in voice_samples]
|
|
|
|
resampler = torchaudio.transforms.Resample(
|
|
self.input_sample_rate,
|
|
self.output_sample_rate,
|
|
lowpass_filter_width=16,
|
|
rolloff=0.85,
|
|
resampling_method="kaiser_window",
|
|
beta=8.555504641634386,
|
|
)
|
|
|
|
samples = []
|
|
auto_conds = []
|
|
for sample in voice_samples:
|
|
auto_conds.append(format_conditioning(sample, device=device, sampling_rate=self.input_sample_rate))
|
|
samples.append(resampler(sample.cpu()).to(device)) # icky no good, easier to do the resampling on CPU than figure out how to do it on GPU
|
|
|
|
auto_conds = torch.stack(auto_conds, dim=1)
|
|
|
|
|
|
self.autoregressive = self.autoregressive.to(device)
|
|
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
|
if self.preloaded_tensors:
|
|
self.autoregressive = self.autoregressive.to(self.device)
|
|
else:
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
|
|
|
|
diffusion_conds = []
|
|
chunks = []
|
|
|
|
concat = torch.cat(samples, dim=-1)
|
|
chunk_size = concat.shape[-1]
|
|
|
|
if slices == 0:
|
|
slices = 1
|
|
else:
|
|
if max_chunk_size is not None and chunk_size > max_chunk_size:
|
|
slices = 1
|
|
while int(chunk_size / slices) > max_chunk_size:
|
|
slices = slices + 1
|
|
|
|
chunks = torch.chunk(concat, slices, dim=1)
|
|
chunk_size = chunks[0].shape[-1]
|
|
|
|
# expand / truncate samples to match the common size
|
|
# required, as tensors need to be of the same length
|
|
for chunk in tqdm_override(chunks, verbose=verbose, progress=progress, desc="Computing conditioning latents..."):
|
|
chunk = pad_or_truncate(chunk, chunk_size)
|
|
cond_mel = wav_to_univnet_mel(chunk.to(device), do_normalization=False, device=device)
|
|
diffusion_conds.append(cond_mel)
|
|
|
|
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
|
|
|
self.diffusion = self.diffusion.to(device)
|
|
|
|
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
|
|
|
if self.preloaded_tensors:
|
|
self.diffusion = self.diffusion.to(self.device)
|
|
else:
|
|
self.diffusion = self.diffusion.cpu()
|
|
|
|
|
|
|
|
if return_mels:
|
|
return auto_latent, diffusion_latent, auto_conds, diffusion_conds
|
|
else:
|
|
return auto_latent, diffusion_latent
|
|
|
|
def get_random_conditioning_latents(self):
|
|
# Lazy-load the RLG models.
|
|
if self.rlg_auto is None:
|
|
self.rlg_auto = RandomLatentConverter(1024).eval()
|
|
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
|
self.rlg_diffusion = RandomLatentConverter(2048).eval()
|
|
self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
|
|
with torch.no_grad():
|
|
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0]))
|
|
|
|
def tts_with_preset(self, text, preset='fast', **kwargs):
|
|
"""
|
|
Calls TTS with one of a set of preset generation parameters. Options:
|
|
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
|
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
|
'standard': Very good quality. This is generally about as good as you are going to get.
|
|
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
|
"""
|
|
# Use generally found best tuning knobs for generation.
|
|
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
|
'top_p': .8,
|
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
|
|
# Presets are defined here.
|
|
presets = {
|
|
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
|
|
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
|
|
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
|
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
|
}
|
|
settings.update(presets[preset])
|
|
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
|
return self.tts(text, **settings)
|
|
|
|
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
|
return_deterministic_state=False,
|
|
# autoregressive generation parameters follow
|
|
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
|
sample_batch_size=None,
|
|
# CVVP parameters follow
|
|
cvvp_amount=.0,
|
|
# diffusion generation parameters follow
|
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
|
diffusion_sampler="P",
|
|
breathing_room=8,
|
|
half_p=False,
|
|
progress=None,
|
|
**hf_generate_kwargs):
|
|
"""
|
|
Produces an audio clip of the given text being spoken with the given reference voice.
|
|
:param text: Text to be spoken.
|
|
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
|
|
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
|
|
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
|
|
Conditioning latents can be retrieved via get_conditioning_latents().
|
|
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
|
|
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
|
~~AUTOREGRESSIVE KNOBS~~
|
|
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
|
|
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
|
:param temperature: The softmax temperature of the autoregressive model.
|
|
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
|
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
|
|
of long silences or "uhhhhhhs", etc.
|
|
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
|
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
|
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
|
|
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
|
|
could use some tuning.
|
|
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
|
|
~~CLVP-CVVP KNOBS~~
|
|
:param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model.
|
|
[0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model.
|
|
~~DIFFUSION KNOBS~~
|
|
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
|
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
|
however.
|
|
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
|
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
|
|
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
|
|
dramatically improves realism.
|
|
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
|
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
|
|
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
|
|
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
|
|
are the "mean" prediction of the diffusion network and will sound bland and smeared.
|
|
~~OTHER STUFF~~
|
|
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
|
|
Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
|
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
|
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
|
Sample rate is 24kHz.
|
|
"""
|
|
|
|
if get_device_name() == "dml" and half_p:
|
|
print("Float16 requested but not supported with the DirectML backend, disabling...")
|
|
half_p = False
|
|
|
|
self.diffusion.enable_fp16 = half_p
|
|
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed)
|
|
|
|
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
|
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
|
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
|
|
|
auto_conds = None
|
|
if voice_samples is not None:
|
|
auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True, verbose=True)
|
|
elif conditioning_latents is not None:
|
|
latent_tuple = conditioning_latents
|
|
if len(latent_tuple) == 2:
|
|
auto_conditioning, diffusion_conditioning = conditioning_latents
|
|
else:
|
|
auto_conditioning, diffusion_conditioning, auto_conds, _ = conditioning_latents
|
|
else:
|
|
auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents()
|
|
|
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
|
|
|
self.autoregressive_batch_size = get_device_batch_size() if sample_batch_size is None or sample_batch_size == 0 else sample_batch_size
|
|
|
|
with torch.no_grad():
|
|
samples = []
|
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
|
if num_autoregressive_samples < self.autoregressive_batch_size:
|
|
num_autoregressive_samples = 1
|
|
stop_mel_token = self.autoregressive.stop_mel_token
|
|
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
|
|
|
self.autoregressive = self.autoregressive.to(self.device)
|
|
auto_conditioning = auto_conditioning.to(self.device)
|
|
text_tokens = text_tokens.to(self.device)
|
|
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=half_p):
|
|
for b in tqdm_override(range(num_batches), verbose=verbose, progress=progress, desc="Generating autoregressive samples"):
|
|
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens,
|
|
do_sample=True,
|
|
top_p=top_p,
|
|
temperature=temperature,
|
|
num_return_sequences=self.autoregressive_batch_size,
|
|
length_penalty=length_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
max_generate_length=max_mel_tokens,
|
|
**hf_generate_kwargs)
|
|
padding_needed = max_mel_tokens - codes.shape[1]
|
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
|
samples.append(codes)
|
|
|
|
if not self.preloaded_tensors:
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
auto_conditioning = auto_conditioning.cpu()
|
|
|
|
clip_results = []
|
|
|
|
if auto_conds is not None:
|
|
auto_conds = auto_conds.to(self.device)
|
|
|
|
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=half_p):
|
|
if not self.minor_optimizations:
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
self.clvp = self.clvp.to(self.device)
|
|
|
|
if cvvp_amount > 0:
|
|
if self.cvvp is None:
|
|
self.load_cvvp()
|
|
if not self.minor_optimizations:
|
|
self.cvvp = self.cvvp.to(self.device)
|
|
|
|
desc="Computing best candidates"
|
|
if verbose:
|
|
if self.cvvp is None:
|
|
desc = "Computing best candidates using CLVP"
|
|
else:
|
|
desc = f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%"
|
|
|
|
for batch in tqdm_override(samples, verbose=verbose, progress=progress, desc=desc):
|
|
for i in range(batch.shape[0]):
|
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
|
|
|
if cvvp_amount != 1:
|
|
clvp = self.clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
|
|
|
|
if auto_conds is not None and cvvp_amount > 0:
|
|
cvvp_accumulator = 0
|
|
for cl in range(auto_conds.shape[1]):
|
|
cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
|
cvvp = cvvp_accumulator / auto_conds.shape[1]
|
|
if cvvp_amount == 1:
|
|
clip_results.append(cvvp)
|
|
else:
|
|
clip_results.append(cvvp * cvvp_amount + clvp * (1-cvvp_amount))
|
|
else:
|
|
clip_results.append(clvp)
|
|
|
|
if not self.preloaded_tensors and auto_conds is not None:
|
|
auto_conds = auto_conds.cpu()
|
|
|
|
clip_results = torch.cat(clip_results, dim=0)
|
|
samples = torch.cat(samples, dim=0)
|
|
best_results = samples[torch.topk(clip_results, k=k).indices]
|
|
|
|
if not self.preloaded_tensors:
|
|
self.clvp = self.clvp.cpu()
|
|
if self.cvvp is not None:
|
|
self.cvvp = self.cvvp.cpu()
|
|
|
|
del samples
|
|
|
|
if get_device_name() == "dml":
|
|
text_tokens = text_tokens.cpu()
|
|
best_results = best_results.cpu()
|
|
auto_conditioning = auto_conditioning.cpu()
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
else:
|
|
#text_tokens = text_tokens.to(self.device)
|
|
#best_results = best_results.to(self.device)
|
|
auto_conditioning = auto_conditioning.to(self.device)
|
|
self.autoregressive = self.autoregressive.to(self.device)
|
|
|
|
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
|
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
|
# results, but will increase memory usage.
|
|
best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
|
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
|
|
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
|
return_latent=True, clip_inputs=False)
|
|
|
|
diffusion_conditioning = diffusion_conditioning.to(self.device)
|
|
|
|
if get_device_name() == "dml":
|
|
self.autoregressive = self.autoregressive.to(self.device)
|
|
best_results = best_results.to(self.device)
|
|
best_latents = best_latents.to(self.device)
|
|
|
|
self.vocoder = self.vocoder.cpu()
|
|
else:
|
|
if not self.preloaded_tensors:
|
|
self.autoregressive = self.autoregressive.cpu()
|
|
|
|
self.diffusion = self.diffusion.to(self.device)
|
|
self.vocoder = self.vocoder.to(self.device)
|
|
|
|
|
|
del text_tokens
|
|
del auto_conditioning
|
|
|
|
wav_candidates = []
|
|
for b in range(best_results.shape[0]):
|
|
codes = best_results[b].unsqueeze(0)
|
|
latents = best_latents[b].unsqueeze(0)
|
|
|
|
# Find the first occurrence of the "calm" token and trim the codes to that.
|
|
ctokens = 0
|
|
for k in range(codes.shape[-1]):
|
|
if codes[0, k] == calm_token:
|
|
ctokens += 1
|
|
else:
|
|
ctokens = 0
|
|
if ctokens > breathing_room: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
|
latents = latents[:, :k]
|
|
break
|
|
|
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning,
|
|
temperature=diffusion_temperature, verbose=verbose, progress=progress, desc="Transforming autoregressive outputs into audio..", sampler=diffusion_sampler,
|
|
input_sample_rate=self.input_sample_rate, output_sample_rate=self.output_sample_rate)
|
|
|
|
wav = self.vocoder.inference(mel)
|
|
wav_candidates.append(wav)
|
|
|
|
if not self.preloaded_tensors:
|
|
self.diffusion = self.diffusion.cpu()
|
|
self.vocoder = self.vocoder.cpu()
|
|
|
|
def potentially_redact(clip, text):
|
|
if self.enable_redaction:
|
|
return self.aligner.redact(clip.squeeze(1).to('cpu' if get_device_name() == "dml" else self.device), text, self.output_sample_rate).unsqueeze(1)
|
|
return clip
|
|
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]
|
|
|
|
if len(wav_candidates) > 1:
|
|
res = wav_candidates
|
|
else:
|
|
res = wav_candidates[0]
|
|
|
|
gc.collect()
|
|
|
|
if return_deterministic_state:
|
|
return res, (deterministic_seed, text, voice_samples, conditioning_latents)
|
|
else:
|
|
return res
|
|
|
|
def deterministic_state(self, seed=None):
|
|
"""
|
|
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
|
|
reproduced.
|
|
"""
|
|
seed = int(time()) if seed is None else seed
|
|
torch.manual_seed(seed)
|
|
random.seed(seed)
|
|
# Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary.
|
|
# torch.use_deterministic_algorithms(True)
|
|
|
|
return seed |