52 lines
2.6 KiB
Python
52 lines
2.6 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
|
|
from api_new_autoregressive import TextToSpeech, load_conditioning
|
|
from utils.audio import load_audio
|
|
from utils.tokenizer import VoiceBpeTokenizer
|
|
|
|
if __name__ == '__main__':
|
|
# These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
|
|
# has shown that the model does not generalize to new voices very well.
|
|
preselected_cond_voices = {
|
|
# Male voices
|
|
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
|
|
'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'],
|
|
'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'],
|
|
'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'],
|
|
# Female voices
|
|
'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'],
|
|
'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'],
|
|
'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'],
|
|
'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'],
|
|
}
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32)
|
|
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
|
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
|
args = parser.parse_args()
|
|
os.makedirs(args.output_path, exist_ok=True)
|
|
|
|
tts = TextToSpeech(autoregressive_batch_size=args.batch_size)
|
|
|
|
for voice in args.voice.split(','):
|
|
tokenizer = VoiceBpeTokenizer()
|
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
|
|
text = F.pad(text, (0,1)) # This may not be necessary.
|
|
cond_paths = preselected_cond_voices[voice]
|
|
conds = []
|
|
for cond_path in cond_paths:
|
|
c = load_audio(cond_path, 22050)
|
|
conds.append(c)
|
|
gen = tts.tts(args.text, conds, num_autoregressive_samples=args.num_samples)
|
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000)
|
|
|