2023-09-09 21:17:20 +00:00
import os
import re
import argparse
2023-09-09 21:51:36 +00:00
import random
2023-09-09 21:17:20 +00:00
import tempfile
import functools
2023-09-10 03:27:20 +00:00
from datetime import datetime
2023-09-09 21:17:20 +00:00
import gradio as gr
2023-09-10 01:05:03 +00:00
from time import perf_counter
2023-09-09 21:17:20 +00:00
from pathlib import Path
2024-06-09 22:11:38 +00:00
from . inference import TTS , cfg
2023-10-21 14:55:38 +00:00
from . train import train
2023-09-09 21:17:20 +00:00
tts = None
layout = { }
layout [ " inference " ] = { }
2023-10-21 14:55:38 +00:00
layout [ " training " ] = { }
2024-07-16 00:59:48 +00:00
layout [ " settings " ] = { }
2023-10-21 14:55:38 +00:00
for k in layout . keys ( ) :
layout [ k ] [ " inputs " ] = { " progress " : None }
layout [ k ] [ " outputs " ] = { }
layout [ k ] [ " buttons " ] = { }
2023-09-09 21:17:20 +00:00
# there's got to be a better way to go about this
def gradio_wrapper ( inputs ) :
def decorated ( fun ) :
@functools.wraps ( fun )
def wrapped_function ( * args , * * kwargs ) :
for i , key in enumerate ( inputs ) :
kwargs [ key ] = args [ i ]
return fun ( * * kwargs )
return wrapped_function
return decorated
2023-09-10 01:05:03 +00:00
class timer :
2024-07-16 00:59:48 +00:00
def __init__ ( self , msg = " Elapsed time: " ) :
self . msg = msg
2023-09-10 01:05:03 +00:00
2024-07-16 00:59:48 +00:00
def __enter__ ( self ) :
self . start = perf_counter ( )
return self
2023-09-10 01:05:03 +00:00
2024-07-16 00:59:48 +00:00
def __exit__ ( self , type , value , traceback ) :
msg = f ' { self . msg } { ( perf_counter ( ) - self . start ) : .3f } s '
gr . Info ( msg )
print ( f ' [ { datetime . now ( ) . isoformat ( ) } ] { msg } ' )
# returns a list of models, assuming the models are placed under ./training/ or ./models/
def get_model_paths ( paths = [ Path ( " ./training/ " ) , Path ( " ./models/ " ) ] ) :
yamls = [ ]
for path in paths :
if not path . exists ( ) :
continue
for yaml in path . glob ( " **/*.yaml " ) :
if " /logs/ " in str ( yaml ) :
continue
yamls . append ( yaml )
return yamls
#
def load_model ( yaml ) :
gr . Info ( f " Loading: { yaml } " )
init_tts ( yaml = Path ( yaml ) , restart = True )
gr . Info ( f " Loaded model " )
def init_tts ( yaml = None , restart = False ) :
2023-09-09 21:17:20 +00:00
global tts
if tts is not None :
if not restart :
return tts
2024-07-23 00:36:07 +00:00
2023-09-09 21:17:20 +00:00
del tts
2024-07-23 00:36:07 +00:00
tts = None
2023-09-09 21:17:20 +00:00
parser = argparse . ArgumentParser ( allow_abbrev = False )
2024-07-16 00:59:48 +00:00
parser . add_argument ( " --yaml " , type = Path , default = os . environ . get ( ' VALLE_YAML ' , yaml ) ) # os environ so it can be specified in a HuggingFace Space too
2023-09-10 03:27:20 +00:00
parser . add_argument ( " --device " , type = str , default = " cuda " )
2023-09-09 21:17:20 +00:00
parser . add_argument ( " --amp " , action = " store_true " )
2023-09-24 22:54:03 +00:00
parser . add_argument ( " --dtype " , type = str , default = " auto " )
2023-09-09 21:17:20 +00:00
args , unknown = parser . parse_known_args ( )
2024-07-16 00:59:48 +00:00
tts = TTS ( config = args . yaml if yaml is None else yaml , device = args . device , dtype = args . dtype if args . dtype != " auto " else None , amp = args . amp )
2023-09-09 21:17:20 +00:00
return tts
@gradio_wrapper ( inputs = layout [ " inference " ] [ " inputs " ] . keys ( ) )
def do_inference ( progress = gr . Progress ( track_tqdm = True ) , * args , * * kwargs ) :
2023-10-10 22:02:33 +00:00
if kwargs . pop ( " dynamic-sampling " , False ) :
kwargs [ ' min-ar-temp ' ] = 0.85 if kwargs [ ' ar-temp ' ] > 0.85 else 0.0
2024-06-09 22:11:38 +00:00
kwargs [ ' min-nar-temp ' ] = 0.85 if kwargs [ ' nar-temp ' ] > 0.85 else 0.0 # should probably disable it for the NAR
2023-10-13 03:49:25 +00:00
else :
kwargs [ ' min-ar-temp ' ] = - 1
kwargs [ ' min-nar-temp ' ] = - 1
2023-10-10 22:02:33 +00:00
2023-09-09 21:17:20 +00:00
parser = argparse . ArgumentParser ( allow_abbrev = False )
2023-09-13 02:28:07 +00:00
# I'm very sure I can procedurally generate this list
2023-09-09 21:17:20 +00:00
parser . add_argument ( " --text " , type = str , default = kwargs [ " text " ] )
parser . add_argument ( " --references " , type = str , default = kwargs [ " reference " ] )
2023-12-21 00:45:58 +00:00
parser . add_argument ( " --language " , type = str , default = " en " )
2023-09-09 23:04:44 +00:00
parser . add_argument ( " --input-prompt-length " , type = float , default = kwargs [ " input-prompt-length " ] )
2024-06-09 22:11:38 +00:00
parser . add_argument ( " --max-ar-steps " , type = int , default = int ( kwargs [ " max-seconds " ] * cfg . dataset . frames_per_second ) )
2024-07-16 00:59:48 +00:00
parser . add_argument ( " --max-nar-levels " , type = int , default = 0 ) , # kwargs["max-nar-levels"])
2023-09-09 21:17:20 +00:00
parser . add_argument ( " --ar-temp " , type = float , default = kwargs [ " ar-temp " ] )
parser . add_argument ( " --nar-temp " , type = float , default = kwargs [ " nar-temp " ] )
2023-10-10 22:02:33 +00:00
parser . add_argument ( " --min-ar-temp " , type = float , default = kwargs [ " min-ar-temp " ] )
parser . add_argument ( " --min-nar-temp " , type = float , default = kwargs [ " min-nar-temp " ] )
2023-09-09 21:51:36 +00:00
parser . add_argument ( " --top-p " , type = float , default = kwargs [ " top-p " ] )
parser . add_argument ( " --top-k " , type = int , default = kwargs [ " top-k " ] )
parser . add_argument ( " --repetition-penalty " , type = float , default = kwargs [ " repetition-penalty " ] )
parser . add_argument ( " --repetition-penalty-decay " , type = float , default = kwargs [ " repetition-penalty-decay " ] )
parser . add_argument ( " --length-penalty " , type = float , default = kwargs [ " length-penalty " ] )
2023-09-13 02:28:07 +00:00
parser . add_argument ( " --beam-width " , type = int , default = kwargs [ " beam-width " ] )
2023-09-18 23:55:41 +00:00
parser . add_argument ( " --mirostat-tau " , type = float , default = kwargs [ " mirostat-tau " ] )
parser . add_argument ( " --mirostat-eta " , type = float , default = kwargs [ " mirostat-eta " ] )
2023-09-09 21:17:20 +00:00
args , unknown = parser . parse_known_args ( )
tmp = tempfile . NamedTemporaryFile ( suffix = ' .wav ' )
2024-07-23 00:36:07 +00:00
"""
2023-09-10 20:50:50 +00:00
if not args . references :
raise ValueError ( " No reference audio provided. " )
2024-07-23 00:36:07 +00:00
"""
2023-09-10 20:50:50 +00:00
2023-09-09 21:17:20 +00:00
tts = init_tts ( )
2024-07-16 00:59:48 +00:00
gr . Info ( " Inferencing... " )
with timer ( " Inferenced in " ) as t :
2023-09-10 01:05:03 +00:00
wav , sr = tts . inference (
text = args . text ,
2023-12-21 00:45:58 +00:00
language = args . language ,
2024-07-23 00:36:07 +00:00
references = [ args . references . split ( " ; " ) ] if args . references is not None else [ ] ,
2023-09-10 01:05:03 +00:00
out_path = tmp . name ,
max_ar_steps = args . max_ar_steps ,
2023-09-10 18:50:13 +00:00
max_nar_levels = args . max_nar_levels ,
2023-09-10 01:05:03 +00:00
input_prompt_length = args . input_prompt_length ,
ar_temp = args . ar_temp ,
nar_temp = args . nar_temp ,
2023-10-10 22:02:33 +00:00
min_ar_temp = args . min_ar_temp ,
min_nar_temp = args . min_nar_temp ,
2023-09-10 01:05:03 +00:00
top_p = args . top_p ,
top_k = args . top_k ,
repetition_penalty = args . repetition_penalty ,
repetition_penalty_decay = args . repetition_penalty_decay ,
2023-09-18 23:55:41 +00:00
length_penalty = args . length_penalty ,
mirostat_tau = args . mirostat_tau ,
mirostat_eta = args . mirostat_eta ,
2023-09-10 01:05:03 +00:00
)
2023-09-09 21:17:20 +00:00
wav = wav . squeeze ( 0 ) . cpu ( ) . numpy ( )
return ( sr , wav )
2023-10-21 14:55:38 +00:00
"""
@gradio_wrapper ( inputs = layout [ " training " ] [ " inputs " ] . keys ( ) )
def do_training ( progress = gr . Progress ( track_tqdm = True ) , * args , * * kwargs ) :
while True :
metrics = next ( it )
yield metrics
"""
2023-09-09 21:51:36 +00:00
def get_random_prompt ( ) :
harvard_sentences = [
" The birch canoe slid on the smooth planks. " ,
" Glue the sheet to the dark blue background. " ,
" It ' s easy to tell the depth of a well. " ,
" These days a chicken leg is a rare dish. " ,
" Rice is often served in round bowls. " ,
" The juice of lemons makes fine punch. " ,
" The box was thrown beside the parked truck. " ,
" The hogs were fed chopped corn and garbage. " ,
" Four hours of steady work faced us. " ,
" A large size in stockings is hard to sell. " ,
" The boy was there when the sun rose. " ,
" A rod is used to catch pink salmon. " ,
" The source of the huge river is the clear spring. " ,
" Kick the ball straight and follow through. " ,
" Help the woman get back to her feet. " ,
" A pot of tea helps to pass the evening. " ,
" Smoky fires lack flame and heat. " ,
" The soft cushion broke the man ' s fall. " ,
" The salt breeze came across from the sea. " ,
" The girl at the booth sold fifty bonds. " ,
" The small pup gnawed a hole in the sock. " ,
" The fish twisted and turned on the bent hook. " ,
" Press the pants and sew a button on the vest. " ,
" The swan dive was far short of perfect. " ,
" The beauty of the view stunned the young boy. " ,
" Two blue fish swam in the tank. " ,
" Her purse was full of useless trash. " ,
" The colt reared and threw the tall rider. " ,
" It snowed, rained, and hailed the same morning. " ,
" Read verse out loud for pleasure. " ,
]
return random . choice ( harvard_sentences )
2023-09-09 22:04:51 +00:00
# setup args
parser = argparse . ArgumentParser ( allow_abbrev = False )
2024-07-16 00:59:48 +00:00
parser . add_argument ( " --yaml " , type = Path , default = os . environ . get ( ' VALLE_YAML ' , None ) ) # os environ so it can be specified in a HuggingFace Space too
2023-09-09 22:04:51 +00:00
parser . add_argument ( " --listen " , default = None , help = " Path for Gradio to listen on " )
parser . add_argument ( " --share " , action = " store_true " )
parser . add_argument ( " --render_markdown " , action = " store_true " , default = " VALLE_YAML " in os . environ )
args , unknown = parser . parse_known_args ( )
args . listen_host = None
args . listen_port = None
args . listen_path = None
if args . listen :
try :
match = re . findall ( r " ^(?:(.+?):( \ d+))?( \ /.*?)?$ " , args . listen ) [ 0 ]
args . listen_host = match [ 0 ] if match [ 0 ] != " " else " 127.0.0.1 "
args . listen_port = match [ 1 ] if match [ 1 ] != " " else None
args . listen_path = match [ 2 ] if match [ 2 ] != " " else " / "
except Exception as e :
pass
if args . listen_port is not None :
args . listen_port = int ( args . listen_port )
if args . listen_port == 0 :
args . listen_port = None
# setup gradio
2023-09-09 21:17:20 +00:00
ui = gr . Blocks ( )
with ui :
with gr . Tab ( " Inference " ) :
with gr . Row ( ) :
2023-09-09 21:51:36 +00:00
with gr . Column ( scale = 8 ) :
layout [ " inference " ] [ " inputs " ] [ " text " ] = gr . Textbox ( lines = 5 , value = get_random_prompt , label = " Input Prompt " )
2023-09-09 21:17:20 +00:00
with gr . Row ( ) :
2023-09-09 21:51:36 +00:00
with gr . Column ( scale = 1 ) :
2024-04-16 15:02:31 +00:00
layout [ " inference " ] [ " inputs " ] [ " reference " ] = gr . Audio ( label = " Audio Input " , sources = [ " upload " ] , type = " filepath " ) #, info="Reference audio for TTS")
2023-09-09 21:17:20 +00:00
# layout["inference"]["stop"] = gr.Button(value="Stop")
layout [ " inference " ] [ " outputs " ] [ " output " ] = gr . Audio ( label = " Output " )
2023-09-09 21:51:36 +00:00
layout [ " inference " ] [ " buttons " ] [ " inference " ] = gr . Button ( value = " Inference " )
with gr . Column ( scale = 7 ) :
2023-09-09 23:04:44 +00:00
with gr . Row ( ) :
2024-06-09 22:11:38 +00:00
layout [ " inference " ] [ " inputs " ] [ " max-seconds " ] = gr . Slider ( value = 12 , minimum = 1 , maximum = 32 , step = 0.1 , label = " Maximum Seconds " , info = " Limits how many steps to perform in the AR pass. " )
2024-07-16 00:59:48 +00:00
#layout["inference"]["inputs"]["max-nar-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
2023-09-09 23:04:44 +00:00
layout [ " inference " ] [ " inputs " ] [ " input-prompt-length " ] = gr . Slider ( value = 3.0 , minimum = 0.0 , maximum = 12.0 , step = 0.05 , label = " Input Prompt Trim Length " , info = " Trims the input prompt down to X seconds. Set 0 to disable. " )
2023-09-09 21:51:36 +00:00
with gr . Row ( ) :
2024-06-09 22:11:38 +00:00
layout [ " inference " ] [ " inputs " ] [ " ar-temp " ] = gr . Slider ( value = 0.95 , minimum = 0.0 , maximum = 1.5 , step = 0.05 , label = " Temperature (AR) " , info = " Modifies the randomness from the samples in the AR. (0 to greedy sample) " )
layout [ " inference " ] [ " inputs " ] [ " nar-temp " ] = gr . Slider ( value = 0.01 , minimum = 0.0 , maximum = 1.5 , step = 0.05 , label = " Temperature (NAR) " , info = " Modifies the randomness from the samples in the NAR. (0 to greedy sample) " )
2023-10-10 22:02:33 +00:00
with gr . Row ( ) :
layout [ " inference " ] [ " inputs " ] [ " dynamic-sampling " ] = gr . Checkbox ( label = " Dynamic Temperature " , info = " Dynamically adjusts the temperature based on the highest confident predicted token per sampling step. " )
2023-09-09 21:51:36 +00:00
with gr . Row ( ) :
2023-09-18 23:55:41 +00:00
layout [ " inference " ] [ " inputs " ] [ " top-p " ] = gr . Slider ( value = 1.0 , minimum = 0.0 , maximum = 1.0 , step = 0.05 , label = " Top P " , info = r " Limits the samples that are outside the top P % o f probabilities. " )
2023-09-09 21:51:36 +00:00
layout [ " inference " ] [ " inputs " ] [ " top-k " ] = gr . Slider ( value = 0 , minimum = 0 , maximum = 1024 , step = 1 , label = " Top K " , info = " Limits the samples to the top K of probabilities. " )
2023-09-13 02:28:07 +00:00
layout [ " inference " ] [ " inputs " ] [ " beam-width " ] = gr . Slider ( value = 0 , minimum = 0 , maximum = 32 , step = 1 , label = " Beam Width " , info = " Number of branches to search through for beam search sampling. " )
2023-09-09 21:51:36 +00:00
with gr . Row ( ) :
2023-09-10 03:27:20 +00:00
layout [ " inference " ] [ " inputs " ] [ " repetition-penalty " ] = gr . Slider ( value = 1.0 , minimum = - 2.0 , maximum = 2.0 , step = 0.05 , label = " Repetition Penalty " , info = " Incurs a penalty to tokens based on how often they appear in a sequence. " )
layout [ " inference " ] [ " inputs " ] [ " repetition-penalty-decay " ] = gr . Slider ( value = 0.0 , minimum = - 2.0 , maximum = 2.0 , step = 0.05 , label = " Repetition Penalty Length Decay " , info = " Modifies the reptition penalty based on how far back in time the token appeared in the sequence. " )
layout [ " inference " ] [ " inputs " ] [ " length-penalty " ] = gr . Slider ( value = 0.0 , minimum = - 2.0 , maximum = 2.0 , step = 0.05 , label = " Length Penalty " , info = " (AR only) Modifies the probability of a stop token based on the current length of the sequence. " )
2023-09-18 23:55:41 +00:00
with gr . Row ( ) :
2023-09-30 00:14:16 +00:00
layout [ " inference " ] [ " inputs " ] [ " mirostat-tau " ] = gr . Slider ( value = 0.0 , minimum = 0.0 , maximum = 8.0 , step = 0.05 , label = " Mirostat τ (Tau) " , info = " The \" surprise \" value when performing mirostat sampling. 0 to disable. " )
2023-09-18 23:55:41 +00:00
layout [ " inference " ] [ " inputs " ] [ " mirostat-eta " ] = gr . Slider ( value = 0.0 , minimum = 0.0 , maximum = 2.0 , step = 0.05 , label = " Mirostat η (Eta) " , info = " The \" learning rate \" during mirostat sampling applied to the maximum surprise. " )
2023-09-09 21:17:20 +00:00
2023-09-09 21:51:36 +00:00
layout [ " inference " ] [ " buttons " ] [ " inference " ] . click (
2023-09-09 21:17:20 +00:00
fn = do_inference ,
inputs = [ x for x in layout [ " inference " ] [ " inputs " ] . values ( ) if x is not None ] ,
outputs = [ x for x in layout [ " inference " ] [ " outputs " ] . values ( ) if x is not None ]
)
2023-10-21 14:55:38 +00:00
"""
with gr . Tab ( " Training " ) :
with gr . Row ( ) :
with gr . Column ( scale = 1 ) :
layout [ " training " ] [ " outputs " ] [ " console " ] = gr . Textbox ( lines = 8 , label = " Console Log " )
with gr . Row ( ) :
with gr . Column ( scale = 1 ) :
layout [ " training " ] [ " buttons " ] [ " train " ] = gr . Button ( value = " Train " )
layout [ " training " ] [ " buttons " ] [ " train " ] . click (
fn = do_training ,
outputs = [ x for x in layout [ " training " ] [ " outputs " ] . values ( ) if x is not None ] ,
)
"""
2024-07-16 00:59:48 +00:00
with gr . Tab ( " Settings " ) :
with gr . Row ( ) :
with gr . Column ( scale = 7 ) :
layout [ " settings " ] [ " inputs " ] [ " models " ] = gr . Dropdown ( choices = get_model_paths ( ) , value = args . yaml , label = " Model " )
with gr . Column ( scale = 1 ) :
layout [ " settings " ] [ " buttons " ] [ " load " ] = gr . Button ( value = " Load Model " )
layout [ " settings " ] [ " buttons " ] [ " load " ] . click (
fn = load_model ,
inputs = [ x for x in layout [ " settings " ] [ " inputs " ] . values ( ) if x is not None ] ,
outputs = [ x for x in layout [ " settings " ] [ " outputs " ] . values ( ) if x is not None ] ,
)
2023-09-09 22:04:51 +00:00
if os . path . exists ( " README.md " ) and args . render_markdown :
md = open ( " README.md " , " r " , encoding = " utf-8 " ) . read ( )
# remove HF's metadata
if md . startswith ( " --- \n " ) :
md = " " . join ( md . split ( " --- " ) [ 2 : ] )
gr . Markdown ( md )
2023-09-09 21:17:20 +00:00
2023-10-21 14:55:38 +00:00
def start ( lock = True ) :
ui . queue ( max_size = 8 )
ui . launch ( share = args . share , server_name = args . listen_host , server_port = args . listen_port , prevent_thread_lock = not lock )
if __name__ == " __main__ " :
start ( )