2024-06-09 01:30:15 +00:00
|
|
|
|
"""
|
|
|
|
|
A (mostly) NAR model that handles inferencing all RVQ levels in parallel (NAR).
|
|
|
|
|
I believe Meta's Voicebox does this too (predict the utterance length, then decode in parallel)
|
|
|
|
|
It *does* have to inference the initial length in an autoregresssive-ish manner (it can technically also be done in parallel)
|
|
|
|
|
|
|
|
|
|
Initial experiments show this only really "works" for the a few brief seconds before going to silence. I imagine I need to read more papers or just need to train longer.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from .base import Base, list_to_tensor, Categorical
|
|
|
|
|
from ..config import cfg
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
|
|
|
|
import random
|
|
|
|
|
import math
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
from torch import Tensor
|
|
|
|
|
from tqdm import trange
|
|
|
|
|
|
|
|
|
|
from ..emb.qnt import trim
|
|
|
|
|
|
|
|
|
|
class NAR(Base):
|
|
|
|
|
@property
|
|
|
|
|
def capabilities(self) -> list[str]:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.capabilities
|
|
|
|
|
return cfg.model.capabilities
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def causal(self):
|
|
|
|
|
return "len" in self.capabilities
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def norm_type(self):
|
|
|
|
|
return "ln" # if self.n_resp_levels == 1 else "adaln"
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def arch_type(self) -> str:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.arch_type
|
|
|
|
|
return cfg.model.arch_type
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_prom_levels(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.prom_levels
|
|
|
|
|
return cfg.model.prom_levels
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_resp_levels(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.resp_levels
|
|
|
|
|
return cfg.model.resp_levels
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_max_levels(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.max_levels
|
|
|
|
|
return cfg.model.max_levels
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_tasks(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.tasks
|
|
|
|
|
return cfg.model.tasks
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_langs(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.langs
|
|
|
|
|
return cfg.model.langs
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def n_tones(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.tones
|
|
|
|
|
return cfg.model.tones
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def causal_size(self) -> int:
|
|
|
|
|
# 1 for the stop token
|
|
|
|
|
# governs how much to shift the logits by
|
|
|
|
|
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
|
|
|
|
|
return 1 # if self.causal else 0
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def interleave(self) -> bool:
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def monolithic(self) -> bool:
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def version(self) -> int:
|
|
|
|
|
if hasattr(self, "config") and self.config:
|
|
|
|
|
return self.config.version
|
|
|
|
|
return cfg.model.version
|
|
|
|
|
|
|
|
|
|
def _prune(self, l: Tensor, stop = None):
|
|
|
|
|
if stop is None:
|
|
|
|
|
stop = self.stop_token
|
|
|
|
|
indices = (l == stop).nonzero()
|
|
|
|
|
if len(indices) == 0:
|
|
|
|
|
return l
|
|
|
|
|
return l[: indices.min().item()]
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _unsqueeze_list(x_list, axis=-1):
|
|
|
|
|
return [x.unsqueeze(dim=axis) for x in x_list]
|
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
|
self,
|
|
|
|
|
text_list: list[Tensor],
|
|
|
|
|
proms_list: list[Tensor],
|
|
|
|
|
resps_list: list[Tensor] | None = None,
|
|
|
|
|
|
|
|
|
|
lang_list: list[Tensor] | None = None,
|
|
|
|
|
tone_list: list[Tensor] | None = None,
|
|
|
|
|
len_list: list[Tensor] | None = None,
|
|
|
|
|
|
|
|
|
|
max_steps: int = 1000,
|
|
|
|
|
max_levels: int = 0,
|
|
|
|
|
max_resp_context: int = -1,
|
|
|
|
|
|
|
|
|
|
sampling_temperature: float = 1.0,
|
|
|
|
|
sampling_min_temperature: float = -1.0,
|
|
|
|
|
sampling_top_k: int = -100,
|
|
|
|
|
sampling_top_p: float = 1.0,
|
|
|
|
|
sampling_repetition_penalty: float = 1.0,
|
|
|
|
|
sampling_repetition_penalty_decay: float = 0.0,
|
|
|
|
|
sampling_length_penalty: float = 0.0,
|
|
|
|
|
sampling_beam_width: int = 0,
|
|
|
|
|
sampling_mirostat_tau: float = 0.0,
|
|
|
|
|
sampling_mirostat_eta: float = 0.1,
|
|
|
|
|
):
|
|
|
|
|
device = text_list[0].device
|
|
|
|
|
batch_size = len(text_list)
|
|
|
|
|
|
|
|
|
|
# is training
|
|
|
|
|
if resps_list is not None:
|
|
|
|
|
p_len_task = 0.25
|
|
|
|
|
|
|
|
|
|
n_levels_set = {r.shape[-1] for r in resps_list}
|
|
|
|
|
n_levels = next(iter(n_levels_set))
|
|
|
|
|
|
|
|
|
|
# is training
|
|
|
|
|
assert n_levels == self.n_resp_levels
|
|
|
|
|
# to-do: make this YAML configurable
|
|
|
|
|
def sample_task():
|
|
|
|
|
return "len" if random.random() < p_len_task else "tts"
|
|
|
|
|
|
|
|
|
|
# generate task list to train against
|
|
|
|
|
task_list = [ sample_task() for _ in range(batch_size) ]
|
|
|
|
|
|
|
|
|
|
# determines which RVQ level to target per batch
|
|
|
|
|
quant_level_range = [ 0 if self.causal else 1, self.n_resp_levels ]
|
|
|
|
|
|
|
|
|
|
if cfg.experimental:
|
|
|
|
|
# makes higher levels less likely
|
|
|
|
|
def generate( lo=0, hi=8 ):
|
|
|
|
|
index = lo
|
|
|
|
|
p = random.random()
|
|
|
|
|
for i in range(lo, hi):
|
|
|
|
|
if p < 1.0 / (2 ** i):
|
|
|
|
|
index = i
|
|
|
|
|
return int(index)
|
|
|
|
|
|
|
|
|
|
quant_levels = [ 0 if task_list[i] == "len" else generate(quant_level_range[0], quant_level_range[1]) for i in range(batch_size) ]
|
|
|
|
|
else:
|
|
|
|
|
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
|
|
|
|
|
quant_levels = [ 0 if task_list[i] == "len" else random.randint(quant_level_range[0], quant_level_range[1]) for i in range(batch_size) ]
|
|
|
|
|
|
|
|
|
|
resps_list = [r[..., 0] if l == 0 else r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
|
|
|
|
|
|
|
|
|
|
inputs = self.inputs(
|
|
|
|
|
text_list=text_list,
|
|
|
|
|
proms_list=proms_list,
|
|
|
|
|
resps_list=resps_list,
|
|
|
|
|
lang_list=lang_list,
|
|
|
|
|
tone_list=tone_list,
|
|
|
|
|
task_list=task_list,
|
|
|
|
|
|
|
|
|
|
quant_levels=quant_levels,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return super().forward(
|
|
|
|
|
inputs=inputs,
|
|
|
|
|
quant_levels=quant_levels,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# NAR
|
|
|
|
|
if len_list is not None:
|
|
|
|
|
# is NAR
|
|
|
|
|
if max_levels == 0:
|
|
|
|
|
max_levels = self.n_resp_levels
|
|
|
|
|
|
|
|
|
|
# fill with mock tokens
|
|
|
|
|
prev_list = [ torch.Tensor([ self.stop_token for _ in range(resp_len) ]).to(device=device, dtype=torch.int16) for resp_len in len_list ]
|
|
|
|
|
|
|
|
|
|
start = True
|
|
|
|
|
for n in trange( max_levels, desc="NAR" ):
|
|
|
|
|
level = 0 if n == 0 else prev_list[0].shape[-1]
|
|
|
|
|
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
|
|
|
|
|
|
|
|
|
|
inputs = self.inputs(
|
|
|
|
|
text_list=text_list,
|
|
|
|
|
proms_list=proms_list,
|
|
|
|
|
resps_list=prev_list,
|
|
|
|
|
lang_list=lang_list,
|
|
|
|
|
tone_list=tone_list,
|
|
|
|
|
quant_levels=quant_levels,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logits = super().forward(
|
|
|
|
|
inputs=inputs,
|
|
|
|
|
quant_levels=quant_levels,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
resps_list = [ logit[-l:].argmax(dim=1) for logit, l in zip(logits, len_list) ]
|
|
|
|
|
|
|
|
|
|
if n == 0:
|
|
|
|
|
prev_list = [ r.unsqueeze(-1).to(device) for r in resps_list ]
|
|
|
|
|
else:
|
|
|
|
|
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
|
|
|
|
|
|
|
|
|
|
return prev_list
|
|
|
|
|
|
|
|
|
|
# is AR
|
|
|
|
|
sequence_list = [ torch.Tensor([0]).to(device=device,dtype=torch.int16) for _ in range(batch_size) ]
|
|
|
|
|
stopped = torch.zeros(batch_size, device=device).bool()
|
|
|
|
|
|
|
|
|
|
stop_token = 10
|
|
|
|
|
task_list = [ "len" for _ in range(batch_size) ]
|
|
|
|
|
|
|
|
|
|
for n in trange(10, desc="AR"):
|
|
|
|
|
len_list = sequence_list
|
|
|
|
|
|
|
|
|
|
inputs = self.inputs(
|
|
|
|
|
text_list=text_list,
|
|
|
|
|
proms_list=proms_list,
|
|
|
|
|
resps_list=resps_list,
|
|
|
|
|
lang_list=lang_list,
|
|
|
|
|
tone_list=tone_list,
|
|
|
|
|
len_list=len_list,
|
|
|
|
|
task_list=task_list,
|
|
|
|
|
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logits = super().forward(
|
|
|
|
|
inputs=inputs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
r = [ logit[-1:].argmax(dim=1) for logit in logits ]
|
|
|
|
|
# sanitize
|
|
|
|
|
for i, token in enumerate(r):
|
|
|
|
|
if token > 10:
|
|
|
|
|
r[i] = 0
|
|
|
|
|
|
|
|
|
|
# append tokens
|
|
|
|
|
for i, ri in enumerate(r):
|
|
|
|
|
if stop_token in ri:
|
|
|
|
|
stopped[i] = True
|
|
|
|
|
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
|
|
|
|
|
|
|
|
|
|
# stop token found
|
|
|
|
|
stopped |= r == stop_token
|
|
|
|
|
if stopped.all().item():
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# convert tokens into int
|
|
|
|
|
return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def example_usage():
|
|
|
|
|
cfg.trainer.backend = "local"
|
|
|
|
|
cfg.hyperparameters.gradient_accumulation_steps = 1
|
|
|
|
|
if cfg.audio_backend == "dac":
|
|
|
|
|
cfg.sample_rate = 44_000
|
|
|
|
|
|
|
|
|
|
from functools import partial
|
|
|
|
|
from einops import repeat
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
from ..emb.qnt import decode_to_file, unload_model
|
|
|
|
|
from ..engines import Engine
|
|
|
|
|
from ..utils import wrapper as ml
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import re
|
|
|
|
|
|
|
|
|
|
device = "cuda"
|
|
|
|
|
|
|
|
|
|
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
|
|
|
|
|
"""
|
|
|
|
|
if "mamba" in cfg.model.arch_type:
|
|
|
|
|
cfg.model.prom_levels = 1
|
|
|
|
|
cfg.model.resp_levels = 1
|
|
|
|
|
"""
|
|
|
|
|
# cfg.model.loss_factors = {}
|
|
|
|
|
|
|
|
|
|
def tokenize(content):
|
|
|
|
|
return torch.tensor( cfg.tokenizer.encode(content) )
|
|
|
|
|
|
|
|
|
|
def _load_quants(path) -> Tensor:
|
|
|
|
|
qnt = np.load(path, allow_pickle=True)[()]
|
|
|
|
|
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.prom_levels, :].t().to(torch.int16)
|
|
|
|
|
|
|
|
|
|
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_list = [
|
|
|
|
|
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
|
|
|
|
|
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
|
|
|
|
|
]
|
|
|
|
|
proms_list = [
|
|
|
|
|
qnt[:cfg.dataset.frames_per_second, :].to(device),
|
|
|
|
|
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
|
|
|
|
]
|
|
|
|
|
resps_list = [
|
|
|
|
|
qnt[:, :].to(device),
|
|
|
|
|
#qnt[:cfg.dataset.frames_per_second, :].to(device),
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
text_list = text_list[:1]
|
|
|
|
|
proms_list = proms_list[:1]
|
|
|
|
|
resps_list = resps_list[:1]
|
|
|
|
|
|
|
|
|
|
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
|
|
|
|
|
kwargs = {
|
|
|
|
|
'n_text_tokens': 256,
|
|
|
|
|
'n_audio_tokens': 1024,
|
|
|
|
|
|
|
|
|
|
'd_model': 1024, # 256, # 1024, # 1536
|
|
|
|
|
'n_heads': 16, # 4, # 16, # 24
|
|
|
|
|
'n_layers': 12, # 32
|
|
|
|
|
'n_experts': 1,
|
|
|
|
|
|
|
|
|
|
'p_dropout': 0.1,
|
|
|
|
|
|
|
|
|
|
'l_padding': 8 if cfg.optimizations.fp8 else 0,
|
|
|
|
|
|
|
|
|
|
'config': cfg.model
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
kwargs['config'] = cfg.model
|
|
|
|
|
except Exception as e:
|
|
|
|
|
pass
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
model = NAR(**kwargs).to(device)
|
|
|
|
|
steps = 200
|
|
|
|
|
|
2024-06-09 16:22:52 +00:00
|
|
|
|
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
|
|
|
|
|
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
|
|
|
|
|
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
|
2024-06-09 01:30:15 +00:00
|
|
|
|
|
|
|
|
|
if cfg.optimizations.dadaptation:
|
|
|
|
|
# do not combine the two
|
|
|
|
|
if scheduler == "schedulefree":
|
|
|
|
|
scheduler = ""
|
|
|
|
|
|
|
|
|
|
learning_rate = 1.0
|
|
|
|
|
|
|
|
|
|
if optimizer == "prodigy":
|
|
|
|
|
if learning_rate is None:
|
|
|
|
|
learning_rate = 1.0
|
|
|
|
|
|
|
|
|
|
optimizer = ml.Prodigy
|
|
|
|
|
elif optimizer == "adagrad":
|
|
|
|
|
if learning_rate is None:
|
|
|
|
|
learning_rate = 1.0e-2
|
|
|
|
|
|
|
|
|
|
optimizer = ml.Adagrad
|
|
|
|
|
elif optimizer == "adamw":
|
|
|
|
|
if learning_rate is None:
|
|
|
|
|
learning_rate = 1.0e-4
|
|
|
|
|
|
|
|
|
|
optimizer = ml.AdamW
|
|
|
|
|
elif optimizer == "sdg":
|
|
|
|
|
if learning_rate is None:
|
|
|
|
|
learning_rate = 1.0e-4
|
|
|
|
|
|
|
|
|
|
optimizer = ml.SGD
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
|
|
|
|
|
|
|
|
|
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
|
|
|
|
|
|
|
|
|
|
optimizer = optimizer(model.parameters(), lr=learning_rate)
|
|
|
|
|
|
|
|
|
|
if scheduler == "schedulefree":
|
|
|
|
|
if isinstance(optimizer, ml.AdamW):
|
|
|
|
|
scheduler = ml.schedulefree.AdamWScheduleFree
|
|
|
|
|
elif isinstance(optimizer, ml.SGD):
|
|
|
|
|
scheduler = ml.schedulefree.SGDScheduleFree
|
|
|
|
|
else:
|
|
|
|
|
scheduler = None
|
|
|
|
|
|
|
|
|
|
if scheduler is not None:
|
|
|
|
|
print("Scheduler:", scheduler)
|
|
|
|
|
optimizer = scheduler( model.parameters(), lr = learning_rate )
|
|
|
|
|
|
|
|
|
|
if cfg.optimizations.replace and cfg.optimizations.linear:
|
|
|
|
|
model = ml.replace_linear( model )
|
|
|
|
|
|
|
|
|
|
if cfg.optimizations.replace and cfg.optimizations.embedding:
|
|
|
|
|
model = ml.replace_embedding( model )
|
|
|
|
|
|
|
|
|
|
engine = Engine(model=model, optimizer=optimizer)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
torch.save( {
|
|
|
|
|
'module': model.state_dict()
|
|
|
|
|
}, f"./data/{cfg.model.arch_type}.pth" )
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
print(f"NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
|
def sample( name, steps=1000 ):
|
|
|
|
|
if cfg.audio_backend == "dac" and name == "init":
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
engine.eval()
|
|
|
|
|
|
|
|
|
|
len_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
|
|
|
|
|
resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.2 )
|
|
|
|
|
|
|
|
|
|
for i, o in enumerate(resps_list):
|
|
|
|
|
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
|
|
|
|
|
|
|
|
|
|
unload_model()
|
|
|
|
|
|
|
|
|
|
def train():
|
|
|
|
|
engine.train()
|
|
|
|
|
t = trange(steps)
|
|
|
|
|
for i in t:
|
|
|
|
|
stats = {"step": i}
|
|
|
|
|
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
|
|
|
|
stats |= {"grad_norm": engine.get_global_grad_norm()}
|
|
|
|
|
|
|
|
|
|
tqdm.write(f"{stats}")
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
torch.save( {
|
|
|
|
|
'module': model.state_dict()
|
|
|
|
|
}, f"./data/{cfg.model.arch_type}.pth" )
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
#sample("init", 5)
|
|
|
|
|
train()
|
|
|
|
|
sample("final")
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
example_usage()
|