vall-e/scripts/process_emilia.py

240 lines
7.1 KiB
Python
Raw Normal View History

"""
# Handles processing audio provided through --input-audio of adequately annotated transcriptions provided through --input-metadata (through transcribe.py)
# Outputs NumPy objects containing quantized audio and adequate metadata for use of loading in the trainer through --output-dataset
"""
import os
import json
import argparse
import torch
import torchaudio
import numpy as np
from tqdm.auto import tqdm
from pathlib import Path
from vall_e.config import cfg
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
def process_items( items, stride=0, stride_offset=0 ):
items = sorted( items )
return items if stride == 0 else [ item for i, item in enumerate( items ) if (i+stride_offset) % stride == 0 ]
def process(
audio_backend="encodec",
input_audio="Emilia",
output_dataset="training",
raise_exceptions=False,
stride=0,
stride_offset=0,
slice="auto",
device="cuda",
dtype="float16",
amp=False,
):
# encodec / vocos
if audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
sample_rate = 48_000
audio_extension = ".dec"
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {audio_backend}")
# prepare from args
cfg.audio_backend = audio_backend # "encodec"
cfg.inference.weight_dtype = dtype # "bfloat16"
cfg.inference.amp = amp # False
# import after because we've overriden the config above
# need to validate if this is even necessary anymore
from vall_e.emb.g2p import encode as phonemize
from vall_e.emb.qnt import encode as quantize, _replace_file_extension
output_dataset = f"{output_dataset}/{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}" # "training"
language_map = {} # k = group, v = language
ignore_groups = [] # skip these groups
ignore_speakers = [] # skip these speakers
only_groups = [] # only process these groups
only_speakers = [] # only process these speakers
always_slice_groups = [] # always slice from this group
missing = {
"transcription": [],
"audio": []
}
dataset = []
# Layout: ./Emilia/JA/JA-B000000/JA_B00000_S00000_W000000.{json|mp3}
for language in sorted(os.listdir(f'./{input_audio}/')):
if not os.path.isdir(f'./{input_audio}/{language}/'):
print("Is not dir:", f'./{input_audio}/{language}/')
continue
if language in ignore_groups:
continue
if only_groups and language not in only_groups:
continue
group_name = "Emilia"
for speaker_id in tqdm(process_items(os.listdir(f'./{input_audio}/{language}/'), stride=stride, stride_offset=stride_offset), desc=f"Processing speaker in {language}"):
if not os.path.isdir(f'./{input_audio}/{language}/{speaker_id}'):
print("Is not dir:", f'./{input_audio}/{language}/{speaker_id}')
continue
if speaker_id in ignore_speakers:
continue
if only_speakers and speaker_id not in only_speakers:
continue
os.makedirs(f'./{output_dataset}/{group_name}/{speaker_id}/', exist_ok=True)
if f'{group_name}/{speaker_id}' not in dataset:
dataset.append(f'{group_name}/{speaker_id}')
txts = []
wavs = []
for filename in os.listdir(f'./{input_audio}/{language}/{speaker_id}'):
if ".mp3" not in filename:
continue
inpath = Path(f'./{input_audio}/{language}/{speaker_id}/{filename}')
jsonpath = _replace_file_extension(inpath, ".json")
if not inpath.exists() or not jsonpath.exists():
missing["audio"].append(str(inpath))
continue
extension = os.path.splitext(filename)[-1][1:]
fname = filename.replace(f'.{extension}', "")
waveform, sample_rate = None, None
outpath = Path(f'./{output_dataset}/{group_name}/{speaker_id}/{fname}.{extension}')
metadata = json.load(open(jsonpath, "r", encoding="utf-8"))
if "text" not in metadata:
continue
if _replace_file_extension(outpath, audio_extension).exists():
continue
text = metadata["text"]
if waveform is None:
waveform, sample_rate = torchaudio.load(inpath)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
wavs.append((
outpath,
text,
language,
waveform,
sample_rate
))
if len(wavs) > 0:
for job in tqdm(wavs, desc=f"Quantizing: {speaker_id}"):
try:
outpath, text, language, waveform, sample_rate = job
phones = phonemize(text, language=f'{language}'.lower())
qnt = quantize(waveform, sr=sample_rate, device=device)
if cfg.audio_backend == "dac":
np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": qnt.original_length,
"sample_rate": qnt.sample_rate,
"input_db": qnt.input_db.cpu().numpy().astype(np.float32),
"chunk_length": qnt.chunk_length,
"channels": qnt.channels,
"padding": qnt.padding,
"dac_version": "1.0.0",
"text": text.strip(),
"phonemes": "".join(phones),
"language": language,
},
})
else:
np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), {
"codes": qnt.cpu().numpy().astype(np.uint16),
"metadata": {
"original_length": waveform.shape[-1],
"sample_rate": sample_rate,
"text": text.strip(),
"phonemes": "".join(phones),
"language": language,
},
})
except Exception as e:
print(f"Failed to quantize: {outpath}:", e)
if raise_exceptions:
raise e
continue
open(f"./{output_dataset}/missing.json", 'w', encoding='utf-8').write(json.dumps(missing))
open(f"./{output_dataset}/dataset.json", 'w', encoding='utf-8').write(json.dumps(dataset))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--amp", action="store_true")
parser.add_argument("--input-audio", type=str, default="Emilia")
parser.add_argument("--output-dataset", type=str, default="training/dataset")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--raise-exceptions", action="store_true")
parser.add_argument("--stride", type=int, default=0)
parser.add_argument("--stride-offset", type=int, default=0)
parser.add_argument("--slice", type=str, default="auto")
args = parser.parse_args()
# do some assumption magic
# to-do: find a nice way to spawn multiple processes where tqdm plays nicely
if args.device.isnumeric():
args.stride = torch.cuda.device_count()
args.stride_offset = int(args.device)
args.device = f'cuda:{args.device}'
process(
audio_backend=args.audio_backend,
input_audio=args.input_audio,
output_dataset=args.output_dataset,
raise_exceptions=args.raise_exceptions,
stride=args.stride,
stride_offset=args.stride_offset,
slice=args.slice,
device=args.device,
dtype=args.dtype,
amp=args.amp,
)
if __name__ == "__main__":
main()