44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
|
import os
|
||
|
import json
|
||
|
import torch
|
||
|
|
||
|
from tqdm.auto import tqdm
|
||
|
from pathlib import Path
|
||
|
from vall_e.emb.g2p import encode as valle_phonemize
|
||
|
from vall_e.emb.qnt import encode_from_file as valle_quantize, _replace_file_extension
|
||
|
|
||
|
input_dataset = "LibriTTS_R"
|
||
|
output_dataset = "LibriTTS-Train"
|
||
|
device = "cuda"
|
||
|
|
||
|
txts = []
|
||
|
wavs = []
|
||
|
|
||
|
for dataset_name in os.listdir(f'./{input_dataset}/'):
|
||
|
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/'):
|
||
|
continue
|
||
|
|
||
|
for speaker_id in tqdm(os.listdir(f'./{input_dataset}/{dataset_name}/'), desc="Processing speaker"):
|
||
|
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}'):
|
||
|
continue
|
||
|
|
||
|
os.makedirs(f'./{output_dataset}/{speaker_id}/', exist_ok=True)
|
||
|
for book_id in os.listdir(f'./{input_dataset}/{dataset_name}/{speaker_id}'):
|
||
|
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'):
|
||
|
continue
|
||
|
for filename in os.listdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'):
|
||
|
os.rename(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}', f'./{output_dataset}/{speaker_id}/{filename}')
|
||
|
|
||
|
if ".original.txt" in filename:
|
||
|
txts.append(Path(f'./{output_dataset}/{speaker_id}/{filename}'))
|
||
|
if ".wav" in filename:
|
||
|
wavs.append(Path(f'./{output_dataset}/{speaker_id}/{filename}'))
|
||
|
|
||
|
for path in tqdm(txts, desc="Phonemizing..."):
|
||
|
phones = valle_phonemize(open(path, "r", encoding="utf-8").read())
|
||
|
open(_replace_file_extension(path, ".phn.txt"), "w", encoding="utf-8").write(" ".join(phones))
|
||
|
|
||
|
for path in tqdm(wavs, desc="Quantizing..."):
|
||
|
qnt = valle_quantize(path, device=device)
|
||
|
torch.save(qnt.cpu(), _replace_file_extension(path, ".qnt.pt"))
|