57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
|
import os
|
||
|
import json
|
||
|
import torch
|
||
|
import torchaudio
|
||
|
|
||
|
from tqdm.auto import tqdm
|
||
|
from pathlib import Path
|
||
|
|
||
|
from tokenizers import Tokenizer
|
||
|
from tokenizers.models import BPE, Unigram, WordLevel, WordPiece
|
||
|
from tokenizers.trainers import BpeTrainer
|
||
|
from tokenizers.pre_tokenizers import Whitespace
|
||
|
from tokenizers.processors import TemplateProcessing
|
||
|
|
||
|
input_metadata = "training-24K"
|
||
|
|
||
|
output_file = Path("./dataset.json")
|
||
|
tokenizer_data = []
|
||
|
|
||
|
def pad(num, zeroes):
|
||
|
return str(num).zfill(zeroes+1)
|
||
|
|
||
|
if output_file.exists():
|
||
|
tokenizer_data = json.loads(open(str(output_file), "r", encoding="utf-8").read())
|
||
|
else:
|
||
|
for dataset_name in os.listdir(f'./{input_metadata}/'):
|
||
|
if not os.path.isdir(f'./{input_metadata}/{dataset_name}/'):
|
||
|
continue
|
||
|
|
||
|
for speaker_id in tqdm(os.listdir(f'./{input_metadata}/{dataset_name}/'), desc="Processing speaker"):
|
||
|
if not os.path.isdir(f'./{input_metadata}/{dataset_name}/{speaker_id}'):
|
||
|
continue
|
||
|
|
||
|
for id in os.listdir(f'./{input_metadata}/{dataset_name}/{speaker_id}/'):
|
||
|
if ".json" not in id:
|
||
|
continue
|
||
|
|
||
|
metadata_path = Path(f'./{input_metadata}/{dataset_name}/{speaker_id}/{id}')
|
||
|
metadata = json.loads(open(metadata_path, "r", encoding="utf-8").read())
|
||
|
|
||
|
tokenizer_data.append( f'{"".join(metadata["phonemes"])}' )
|
||
|
|
||
|
open(output_file, 'w', encoding='utf-8').write(json.dumps(tokenizer_data))
|
||
|
|
||
|
unk_token = "<unk>"
|
||
|
spl_tokens = ["<bos>", "</eos>", unk_token, "<mask>"]
|
||
|
|
||
|
trainer = BpeTrainer(special_tokens = spl_tokens, vocab_size = 256)
|
||
|
tokenizer = Tokenizer(BPE(unk_token = unk_token))
|
||
|
tokenizer.pre_tokenizer = Whitespace()
|
||
|
tokenizer.post_processor = TemplateProcessing(
|
||
|
single="<bos> $A <eos>",
|
||
|
special_tokens=[("<bos>", 1), ("<eos>", 2)],
|
||
|
)
|
||
|
|
||
|
tokenizer.train_from_iterator(tokenizer_data, trainer=trainer)
|
||
|
tokenizer.save("./tokenizer.json")
|