vall-e/vall_e/models/nar.py

449 lines
13 KiB
Python
Raw Normal View History

2024-06-09 01:30:15 +00:00
"""
A (mostly) NAR model that handles inferencing all RVQ levels in parallel (NAR).
I believe Meta's Voicebox does this too (predict the utterance length, then decode in parallel)
It *does* have to inference the initial length in an autoregresssive-ish manner (it can technically also be done in parallel)
Initial experiments show this only really "works" for the a few brief seconds before going to silence. I imagine I need to read more papers or just need to train longer.
"""
from .base import Base, list_to_tensor, Categorical
from ..config import cfg
import torch
from torch.nn.utils.rnn import pad_sequence
import random
import math
from einops import rearrange
from torch import Tensor
from tqdm import trange
from ..emb.qnt import trim
import logging
_logger = logging.getLogger(__name__)
2024-06-09 01:30:15 +00:00
class NAR(Base):
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
task_list: list[Tensor] | None = None,
2024-06-09 01:30:15 +00:00
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
training: bool | int | None = None,
2024-06-09 01:30:15 +00:00
max_steps: int = 1000,
max_levels: int = 0,
input_prompt_prefix: bool = False,
prefix_silence: float = 1.0,
2024-06-09 01:30:15 +00:00
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_min_p: float = 0.0,
2024-06-09 01:30:15 +00:00
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
sampling_dry_multiplier=0.0,
sampling_dry_base=1.75,
sampling_dry_allowed_length=2,
sampling_entropix=False,
sampling_layer_skip: bool = False,
sampling_layer_skip_exit_layer: int = -1,
disable_tqdm=False,
use_lora=None,
2024-06-09 01:30:15 +00:00
):
device = text_list[0].device
batch_size = len(text_list)
# is training
if resps_list is not None:
len_train_p = self.config.experimental.len_train_p if self.config is not None else 0.05
2024-06-09 01:30:15 +00:00
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))
2024-06-12 04:59:28 +00:00
# assert n_levels == self.n_resp_levels
2024-06-09 01:30:15 +00:00
# to-do: make this YAML configurable
def sample_task():
return "len" if random.random() < len_train_p else "tts"
2024-06-09 01:30:15 +00:00
# generate task list to train against
task_list = [ sample_task() for _ in range(batch_size) ]
# specifies how to sample probabilities of which RVQ levels to train against
rvq_levels_p = self.config.experimental.rvq_levels_p if self.config is not None else "equal"
# determines which RVQ level to target per batch
quant_level_range = self.config.experimental.rvq_level_range if self.config is not None and self.config.experimental.rvq_level_range else [ 0 if self.causal else 1, self.n_resp_levels - 1 ]
# rate to perform token dropout errors
token_dropout_error = self.config.experimental.token_dropout_error
# RVQ levels to apply token dropout on
token_dropout_rvq_levels = self.config.experimental.token_dropout_rvq_levels
# implicitly set it to all levels
if not token_dropout_rvq_levels:
token_dropout_rvq_levels = [0, self.resp_levels - 1]
# allow passing a specific distribution of RVQ levels
rvq_levels_p = rvq_levels_p if isinstance(rvq_levels_p, list) else []
if not rvq_levels_p:
lo, hi = quant_level_range[0], quant_level_range[1] + 1
# randomly select a target RVQ-bin level (0 being AR, 1+ being NAR)
if rvq_levels_p == "equal":
rvq_levels_p = [ i for i in range( lo, hi ) ]
else:
# yuck
rvq_levels_p = sum([[i for _ in range(hi - i)] for i in range( lo, hi ) ], [])
# input RVQ levels
quant_levels = [ random.choice( rvq_levels_p ) for i in range(batch_size) ]
# trim resps to only contain all levels below the target level
resps_list = [r[..., :l+1] for r, l in zip(resps_list, quant_levels)]
# I hate python's value/reference semantics so much
for i, quant_level, resps, proms in zip(range(batch_size), quant_levels, resps_list, proms_list):
# cap quant_level if it exceeds its corresponding resp/prom
if quant_level >= resps.shape[-1]:
quant_levels[i] = resps.shape[-1] - 1
# proms could be a Tensor, list[Tensor], or None
if isinstance( proms, torch.Tensor ):
if quant_level >= proms.shape[-1]:
quant_levels[i] = proms.shape[-1] - 1
elif isinstance( proms, list ):
for j, prom in enumerate( proms ):
if not isinstance( prom, torch.Tensor ):
continue
if quant_level >= prom.shape[-1]:
quant_levels[i] = prom.shape[-1] - 1
# apply token dropout error compensation
if token_dropout_error > 0 and (token_dropout_rvq_levels[0] <= quant_level and quant_level <= token_dropout_rvq_levels[1]):
steps = resps.shape[0]
for l in range( quant_level ):
for t in range( steps ):
token = resps[t, l].item()
if random.random() < token_dropout_error:
offset = 1 * ( 1 if random.random() < 0.5 else -1 )
resps_list[i][t, l] = clamp(token + offset, 1, 1022) # +- 1
2024-06-09 01:30:15 +00:00
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
task_list=task_list,
quant_levels=quant_levels,
)
return super().forward(
inputs=inputs,
quant_levels=quant_levels,
)
# NAR
if len_list is not None:
# is NAR
if max_levels == 0:
max_levels = self.n_resp_levels
# fill with mock tokens
prev_list = [ torch.tensor([ self.stop_token for _ in range(resp_len) ], device=device, dtype=torch.int16) for resp_len in len_list ]
2024-06-09 01:30:15 +00:00
start = True
for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
2024-06-09 01:30:15 +00:00
level = 0 if n == 0 else prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = [ level for _ in range(batch_size) ] # torch.full((len(text_list),), level)
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=prev_list,
lang_list=lang_list,
tone_list=tone_list,
quant_levels=quant_levels,
)
output = super().forward(
2024-06-09 01:30:15 +00:00
inputs=inputs,
quant_levels=quant_levels,
)
logits = output.logits
2024-06-09 01:30:15 +00:00
"""
2024-06-09 01:30:15 +00:00
resps_list = [ logit[-l:].argmax(dim=1) for logit, l in zip(logits, len_list) ]
"""
sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=1.0 if n == 0 else sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
min_p=sampling_min_p,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
)
resps_list = sampled[0]
2024-06-09 01:30:15 +00:00
if n == 0:
prev_list = [ r.unsqueeze(-1).to(device) for r in resps_list ]
else:
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
# is AR
sequence_list = [ torch.tensor([0], device=device,dtype=torch.int16) for _ in range(batch_size) ]
2024-06-09 01:30:15 +00:00
stopped = torch.zeros(batch_size, device=device).bool()
stop_token = 10
task_list = [ "len" for _ in range(batch_size) ]
for n in trange(10, desc="AR", disable=disable_tqdm):
2024-06-09 01:30:15 +00:00
len_list = sequence_list
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
task_list=task_list,
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
)
output = super().forward(
2024-06-09 01:30:15 +00:00
inputs=inputs,
)
logits = output.logits
2024-06-09 01:30:15 +00:00
r = [ logit[-1:].argmax(dim=1) for logit in logits ]
# sanitize
for i, token in enumerate(r):
if token > 10:
2024-08-03 13:40:39 +00:00
r[i][0] = stop_token
2024-06-09 01:30:15 +00:00
# append tokens
for i, ri in enumerate(r):
if stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == stop_token
if stopped.all().item():
break
# convert tokens into int
return [ int("".join([ str(token.item()) for token in r if token != stop_token ])) for r in sequence_list ]
def example_usage():
cfg.trainer.backend = "local"
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
2024-07-04 20:58:08 +00:00
cfg.sample_rate = 44_100
2024-06-09 01:30:15 +00:00
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
from ..utils import wrapper as ml
import numpy as np
import re
device = "cuda"
# mamba seems to ONLY be used as an AR (any NAR attempts lobotomizes it)
"""
if "mamba" in cfg.model.arch_type:
cfg.model.resp_levels = 1
"""
# cfg.model.loss_factors = {}
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.resp_levels, :].t().to(torch.int16)
2024-06-09 01:30:15 +00:00
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk").to(device),
]
proms_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resps_list = [
qnt[:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resps_list = resps_list[:1]
# rentet-full is the only configuration with BitNet's BitLinear that converges despite the grad_norm saying otherwise
kwargs = {
'n_text_tokens': 256,
'n_audio_tokens': 1024,
'd_model': 1024, # 256, # 1024, # 1536
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'p_dropout': 0.1,
'l_padding': 8 if cfg.optimizations.fp8 else 0,
'config': cfg.model
}
"""
try:
kwargs['config'] = cfg.model
except Exception as e:
pass
"""
model = NAR(**kwargs).to(device)
steps = 250
2024-06-09 01:30:15 +00:00
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.yaml_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.yaml_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.yaml_path is not None else None
2024-06-09 01:30:15 +00:00
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
_logger.info(f"Optimizer: {optimizer}\tLearning rate: {learning_rate}")
2024-06-09 01:30:15 +00:00
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
_logger.info(f"Scheduler: {scheduler}")
2024-06-09 01:30:15 +00:00
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
engine = Engine(model=model, optimizer=optimizer)
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
_logger.info(f"NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
2024-06-09 01:30:15 +00:00
@torch.inference_mode()
def sample( name, steps=1000 ):
if cfg.audio_backend == "dac" and name == "init":
return
engine.eval()
len_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.2 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
stats = {"step": i}
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
"""
torch.save( {
'module': model.state_dict()
}, f"./data/{cfg.model.arch_type}.pth" )
"""
#sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
example_usage()