2023-08-02 21:53:35 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
def plot(paths, args):
|
|
|
|
dfs = []
|
|
|
|
|
|
|
|
for path in paths:
|
|
|
|
with open(path, "r") as f:
|
|
|
|
text = f.read()
|
|
|
|
|
|
|
|
rows = []
|
|
|
|
|
2023-09-02 18:31:04 +00:00
|
|
|
pattern = r"(\{.+?\})\.\n"
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
for row in re.findall(pattern, text, re.DOTALL):
|
|
|
|
try:
|
|
|
|
row = json.loads(row)
|
|
|
|
except Exception as e:
|
|
|
|
continue
|
|
|
|
|
2023-09-02 18:31:04 +00:00
|
|
|
if f"{args.model_name}.engine_step" in row:
|
2023-08-02 21:53:35 +00:00
|
|
|
rows.append(row)
|
|
|
|
|
|
|
|
df = pd.DataFrame(rows)
|
|
|
|
|
|
|
|
if "name" in df:
|
|
|
|
df["name"] = df["name"].fillna("train")
|
|
|
|
else:
|
|
|
|
df["name"] = "train"
|
|
|
|
|
|
|
|
df["group"] = str(path.parents[args.group_level])
|
|
|
|
df["group"] = df["group"] + "/" + df["name"]
|
|
|
|
|
|
|
|
dfs.append(df)
|
|
|
|
|
|
|
|
df = pd.concat(dfs)
|
|
|
|
|
|
|
|
if args.max_y is not None:
|
2023-09-02 18:31:04 +00:00
|
|
|
df = df[df[f"{args.model_name}.engine_step"] < args.max_x]
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
for gtag, gdf in sorted(
|
|
|
|
df.groupby("group"),
|
|
|
|
key=lambda p: (p[0].split("/")[-1], p[0]),
|
|
|
|
):
|
|
|
|
for y in args.ys:
|
2023-09-02 18:31:04 +00:00
|
|
|
gdf = gdf.sort_values(f"{args.model_name}.engine_step")
|
2023-08-02 21:53:35 +00:00
|
|
|
|
|
|
|
if gdf[y].isna().all():
|
|
|
|
continue
|
|
|
|
|
|
|
|
if args.max_y is not None:
|
|
|
|
gdf = gdf[gdf[y] < args.max_y]
|
|
|
|
|
|
|
|
gdf[y] = gdf[y].ewm(10).mean()
|
|
|
|
|
|
|
|
gdf.plot(
|
2023-09-02 18:31:04 +00:00
|
|
|
x=f"{args.model_name}.engine_step",
|
2023-08-02 21:53:35 +00:00
|
|
|
y=y,
|
2023-09-02 18:31:04 +00:00
|
|
|
label=f"{y}",
|
2023-08-02 21:53:35 +00:00
|
|
|
ax=plt.gca(),
|
|
|
|
marker="x" if len(gdf) < 100 else None,
|
|
|
|
alpha=0.7,
|
|
|
|
)
|
|
|
|
|
|
|
|
plt.gca().legend(
|
|
|
|
loc="center left",
|
|
|
|
fancybox=True,
|
|
|
|
shadow=True,
|
|
|
|
bbox_to_anchor=(1.04, 0.5),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("ys", nargs="+")
|
|
|
|
parser.add_argument("--log-dir", default="logs", type=Path)
|
|
|
|
parser.add_argument("--out-dir", default="logs", type=Path)
|
|
|
|
parser.add_argument("--filename", default="log.txt")
|
|
|
|
parser.add_argument("--max-x", type=float, default=float("inf"))
|
|
|
|
parser.add_argument("--max-y", type=float, default=float("inf"))
|
|
|
|
parser.add_argument("--group-level", default=1)
|
2023-09-02 18:31:04 +00:00
|
|
|
parser.add_argument("--model-name", type=str, default="ar")
|
2023-08-02 21:53:35 +00:00
|
|
|
parser.add_argument("--filter", default=None)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
paths = args.log_dir.rglob(f"**/{args.filename}")
|
|
|
|
|
|
|
|
if args.filter:
|
|
|
|
paths = filter(lambda p: re.match(".*" + args.filter + ".*", str(p)), paths)
|
|
|
|
|
|
|
|
plot(paths, args)
|
|
|
|
|
|
|
|
name = "-".join(args.ys)
|
|
|
|
out_path = (args.out_dir / name).with_suffix(".png")
|
|
|
|
plt.savefig(out_path, bbox_inches="tight")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|