vall-e/scripts/process_seed-tts.py

53 lines
1.4 KiB
Python
Raw Normal View History

"""
Handles processing seed-tts-eval's dataset into something to be used for vall_e.demo
Reads from meta.lst, a text file where each utterance is formatted as:
<reference path>|<reference text>|<prompt path>|<prompt text>
"""
import os
import json
import argparse
import torch
import shutil
import torchaudio
import numpy as np
from tqdm.auto import tqdm
from pathlib import Path
def process(
input_dir=Path("./seedtts_testset/en/"),
list_name="./meta.lst",
wav_dir="./wavs/",
output_dir=Path("./dataset/seed-tts-eval-en/"),
):
language = "auto"
if "en" in str(input_dir):
language = "en"
elif "zh" in str(input_dir):
language = "zh"
output_dir.mkdir(parents=True, exist_ok=True)
# read manifest
lines = open(input_dir / list_name).read()
lines = lines.split("\n")
# split it even further
for line in lines:
if not line:
continue
2024-12-18 05:17:12 +00:00
filename, prompt_text, prompt_wav, text = line.split("|")
2024-12-18 05:17:12 +00:00
(output_dir / filename / "out").mkdir(parents=True, exist_ok=True)
2024-12-18 05:17:12 +00:00
open( output_dir / filename / "prompt.txt", "w", encoding="utf-8" ).write( text )
open( output_dir / filename / "language.txt", "w", encoding="utf-8" ).write( language )
2024-12-18 05:17:12 +00:00
shutil.copy((input_dir / wav_dir / filename).with_suffix(".wav"), output_dir / filename / "reference.wav" )
shutil.copy(input_dir / prompt_wav, output_dir / filename / "prompt.wav" )
if __name__ == "__main__":
process()