vall-e/vall_e/models/ar.py

222 lines
6.8 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
from ..config import cfg
from .base import Base, list_to_tensor, Categorical
import torch
from einops import rearrange
from torch import Tensor
from tqdm import trange
class AR(Base):
@property
def n_resp_levels(self) -> int:
return cfg.models.ar.resp_levels
@property
def causal(self):
return True
@property
def use_stop_token(self):
return True
@property
def norm_type(self):
return "ln"
@property
def arch_type(self) -> bool:
return cfg.models.ar.arch_type
@property
def n_prom_levels(self) -> int:
return cfg.models.prom_levels
@property
def resp_loss_only(self):
return False
def _prune(self, l: Tensor):
indices = (l == self.stop_token).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resp_list: list[Tensor] | None = None,
max_steps: int = 1000,
sampling_temperature: float = 1.0,
naive: bool = True,
):
if resp_list is not None:
return super().forward(
text_list,
proms_list,
self._unsqueeze_list(resp_list),
resp_list,
quant_levels=None,
shift_targ_list=True,
return_all_resp=False,
)
else:
return self._generate(
text_list,
proms_list,
max_steps,
sampling_temperature,
naive=naive,
)
def _generate(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
max_steps: int,
sampling_temperature: float,
naive: bool = True,
):
device = text_list[0].device
resp_list: list[Tensor] = [
torch.zeros(0, device=device).to(torch.int16) for _ in text_list
]
stopped = torch.zeros(len(text_list), device=device).bool()
if self.arch_type == "transformer":
naive = True
chunk_size = 1 # don't really know what to do about this desu
state = None
start = 0
# prefill
if self.arch_type == "retnet/local":
# pre-process
state = [
[
torch.zeros(self.retnet.hidden_dim // self.retnet.heads, self.retnet.v_dim // self.retnet.heads, device=device).unsqueeze(0).repeat(len(text_list), 1, 1)
for _ in range(self.retnet.heads)
] for _ in range(self.retnet.layers)
]
resps_list = self._unsqueeze_list(resp_list)
x_list = self._samplewise_merge_tensors(
self.text_emb(text_list),
self.proms_emb(proms_list),
self.resps_emb(resps_list),
sep=self.sep,
)
x, m = list_to_tensor(x_list)
start = x.shape[1]
for i in trange(start-1):
_, state = self.retnet.forward_recurrent( x[:, i:i+1, :], state, i+1 )
for n in trange(max_steps // chunk_size):
# get next in sequence
r, state = super().forward(
text_list,
proms_list,
self._unsqueeze_list(resp_list),
sampling_temperature=sampling_temperature,
state=state,
)
# append outputted token
for i, ri in enumerate(r):
resp_list[i] = torch.cat([resp_list[i], ri[None]])
# stop token found
stopped |= r == self.stop_token
if stopped.all().item():
break
pruned = [self._prune(r) for r in resp_list]
return pruned
def example_usage():
from functools import partial
from einops import repeat
from ..emb.qnt import decode_to_file
from ..utils import gather_attribute
device = "cpu"
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, '': 11, '': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, '': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, '': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, '': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, '': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, '': 78, '': 79, 'vˈ': 80, '': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, '': 85, 'pˈ': 86, 'ðˌ': 87, '': 88, '': 89, '': 90, '̩': 91, 'ʔ': 92, '': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, '': 100, 'uːˈ': 101, 'iːˈ': 102, '': 103, '.ˈ': 104, '': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, '': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '': 126, 'ɫ': 127, 'q': 128, '': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '': 149, '': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, '': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
qnt = torch.load("data/qnt.pt")[0, 0].to(device)
kwargs = {
'n_tokens': 1024,
'd_model': 1024,
'n_heads': 16,
'n_layers': 12,
}
model = AR(**kwargs).to(device)
x8 = partial(repeat, pattern="t -> t l", l=2)
text_list = [
#torch.tensor([1, 2, 3], device=device),
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
]
proms_list = [
x8(torch.tensor([1, 2, 3], device=device)),
#qnt.to(device),
]
resp_list = [
qnt.to(device),
]
text_list = text_list[:1]
proms_list = proms_list[:1]
resp_list = resp_list[:1]
model.eval()
out = model(text_list, proms_list, max_steps=75)[0]
print("qnt:", qnt.shape, qnt)
print("out:", out.shape, out)
wav, sr = decode_to_file(out, "data/test/test.ar.init.wav", device=device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
model.train()
for i in trange(60):
optimizer.zero_grad()
_ = model(text_list, proms_list, resp_list)
losses = gather_attribute(model, "loss")
loss = sum(losses.values())
loss.backward()
optimizer.step()
if i % 20 == 0:
print(f"iter={i}, {losses}.")
model.eval()
out = model(text_list, proms_list, max_steps=400)
print("qnt:", qnt.shape, qnt)
for i, o in enumerate(out):
print("out:", i, o.shape, o)
wav, sr = decode_to_file(o, f"data/test/test.ar.{i}.wav", device=device)
if __name__ == "__main__":
example_usage()