vall-e/vall_e/metrics.py

33 lines
1.2 KiB
Python
Raw Normal View History

# handles objective metric calculations, such as WER and SIM-O
#from .emb.transcribe import transcribe
from .emb.similar import speaker_similarity_embedding
from .emb.transcribe import transcribe
from .emb.g2p import detect_language
from .data import normalize_text
import torch.nn.functional as F
from pathlib import Path
from torcheval.metrics.functional import word_error_rate
def wer( audio, reference, language="auto", **transcription_kwargs ):
if language == "auto":
language = detect_language( reference )
transcription = transcribe( audio, language=language, align=False, **transcription_kwargs )["text"]
# reference audio needs transcribing too
if isinstance( reference, Path ):
reference = transcribe( reference, language=language, align=False, **transcription_kwargs )["text"]
transcription = normalize_text( transcription )
reference = normalize_text( reference )
return word_error_rate([transcription], [reference]).item()
def sim_o( audio, reference, **kwargs ):
audio_emb = speaker_similarity_embedding( audio, **kwargs )
reference_emb = speaker_similarity_embedding( reference, **kwargs )
return F.cosine_similarity( audio_emb, reference_emb ).item()