An unofficial PyTorch implementation of [VALL-E](https://valle-demo.github.io/), utilizing the [EnCodec](https://github.com/facebookresearch/encodec) encoder/decoder.
4. Copy `./data/config.yaml` to `./training/config.yaml`. Customize the training configuration and populate your `dataset.training` list with the values stored under `./training/dataset_list.json`.
+ Refer to `./vall_e/config.py` for additional configuration details.
- it is *highly* recommended to generate metadata to speed up dataset pre-load with `python3 -m vall_e.data --yaml="./training/config.yaml" --action=metadata`
- you can convert from the standard way with the following command: `python3 -m vall_e.data --yaml="./training/config.yaml"` (metadata for dataset pre-load is generated alongside HDF5 creation)
Included is a helper script to parse the training metrics. Simply invoke it with, for example: `python3 -m vall_e.plot --yaml="./training/config.yaml"`
As training under `deepspeed` and Windows is not (easily) supported, under your `config.yaml`, simply change `trainer.backend` to `local` to use the local training backend.
Creature comforts like `float16`, `amp`, and multi-GPU training *should* work, but extensive testing still needs to be done to ensure it all functions.
* too tightly trimmed utterances: there being little to no space at the start and end might harm associating `<s>` and `</s>` tokens with empty utterances.
* a poorly mapped phoneme mapping: I naively crafted my own phoneme mapping, where a HuggingFace tokenizer might supply a better token mapping.
*`transformer`: a basic attention-based transformer implementation, with attention heads + feed forwards.
*`retnet`: using [TorchScale's RetNet](https://github.com/microsoft/torchscale/blob/main/torchscale/architecture/retnet.py) implementation, a retention-based approach can be used instead.
- Its implementation for MoE can also be utilized.
- **Note** models using `descript-audio-codec` at 44KHz + 8kbps seems harder to model its "language", but despite the loss being rather high, it sounds fine.
This will export the latest checkpoints, for example, under `./training/ckpt/ar+nar-retnet-8/fp32.pth`, to be loaded on any system with PyTorch, and will include additional metadata, such as the symmap used, and training stats.
*`--ar-temp`: sampling temperature to use for the AR pass. During experimentation, `0.95` provides the most consistent output, but values close to it works fine.
*`--nar-temp`: sampling temperature to use for the NAR pass. During experimentation, `0.2` provides clean output, but values upward of `0.6` seems fine too.
And some experimental sampling flags you can use too (your mileage will ***definitely*** vary):
*`--max-ar-context`: Number of `resp` tokens to keep in the context when inferencing. This is akin to "rolling context" in an effort to try and curb any context limitations, but currently does not seem fruitful.
*`--min-ar-temp` / `--min-nar-temp`: triggers the dynamic temperature pathway, adjusting the temperature based on the confidence of the best token. Acceptable values are between `[0.0, (n)ar-temp)`.
+ This simply uplifts the [original implementation](https://github.com/kalomaze/koboldcpp/blob/dynamic-temp/llama.cpp#L5132) to perform it.
+ **!**NOTE**!**: This does not seem to resolve any issues with setting too high/low of a temperature. The right values are yet to be found.
*`--top-p`: limits the sampling pool to top sum of values that equal `P`% probability in the probability distribution.
*`--top-k`: limits the sampling pool to the top `K` values in the probability distribution.
*`--repetition-penalty`: modifies the probability of tokens if they have appeared before. In the context of audio generation, this is a very iffy parameter to use.
*`--length-penalty`: (AR only) modifies the probability of the stop token based on the current sequence length. This is ***very*** finnicky due to the AR already being well correlated with the length.
- utilize an approach similar to [FasterDecoding/Medusa](https://github.com/FasterDecoding/Medusa/) with additional heads for decoding N+1, N+2, N+3 AR tokens
- [EnCodec](https://github.com/facebookresearch/encodec) is licensed under CC-BY-NC 4.0. If you use the code to generate audio quantization or perform decoding, it is important to adhere to the terms of their license.
- This implementation was originally based on [enhuiz/vall-e](https://github.com/enhuiz/vall-e), but has been heavily, heavily modified over time. Without it I would not have had a good basis to muck around and learn.
title={Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers},
author={Wang, Chengyi and Chen, Sanyuan and Wu, Yu and Zhang, Ziqiang and Zhou, Long and Liu, Shujie and Chen, Zhuo and Liu, Yanqing and Wang, Huaming and Li, Jinyu and others},
journal={arXiv preprint arXiv:2301.02111},
year={2023}
}
```
```bibtex
@article{defossez2022highfi,
title={High Fidelity Neural Audio Compression},
author={Défossez, Alexandre and Copet, Jade and Synnaeve, Gabriel and Adi, Yossi},