45 lines
2.0 KiB
Python
45 lines
2.0 KiB
Python
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from transformers import MixtralModel, MixtralConfig
|
||
|
from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func, MixtralSparseMoeBlock
|
||
|
|
||
|
# This is required because batch sizes > 1 throws errors
|
||
|
def Fixed_MixtralSparseMoeBlock_forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
""" """
|
||
|
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
||
|
hidden_states = hidden_states.reshape(-1, hidden_dim) # was view()
|
||
|
# router_logits: (batch * sequence_length, n_experts)
|
||
|
router_logits = self.gate(hidden_states)
|
||
|
|
||
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
||
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
||
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
||
|
# we cast back to the input dtype
|
||
|
routing_weights = routing_weights.to(hidden_states.dtype)
|
||
|
|
||
|
final_hidden_states = torch.zeros(
|
||
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
||
|
)
|
||
|
|
||
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
||
|
|
||
|
for expert_idx in range(self.num_experts):
|
||
|
expert_layer = self.experts[expert_idx]
|
||
|
idx, top_x = torch.where(expert_mask[expert_idx])
|
||
|
|
||
|
if top_x.shape[0] == 0:
|
||
|
continue
|
||
|
top_x_list = top_x.tolist()
|
||
|
idx_list = idx.tolist()
|
||
|
|
||
|
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
||
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
||
|
|
||
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
||
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
||
|
return final_hidden_states, router_logits
|
||
|
|
||
|
Original_MixtralSparseMoeBlock_forward = MixtralSparseMoeBlock.forward
|
||
|
MixtralSparseMoeBlock.forward = Fixed_MixtralSparseMoeBlock_forward
|