2023-09-02 21:29:53 +00:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
from .config import cfg
|
|
|
|
|
|
|
|
def plot(paths, args):
|
|
|
|
dfs = []
|
|
|
|
|
|
|
|
for path in paths:
|
|
|
|
with open(path, "r") as f:
|
|
|
|
text = f.read()
|
|
|
|
|
|
|
|
rows = []
|
|
|
|
|
|
|
|
pattern = r"(\{.+?\})\.\n"
|
|
|
|
|
|
|
|
for row in re.findall(pattern, text, re.DOTALL):
|
|
|
|
try:
|
|
|
|
row = json.loads(row)
|
|
|
|
except Exception as e:
|
|
|
|
continue
|
|
|
|
|
|
|
|
for model in args.models:
|
|
|
|
if f'{model.name}.{args.xs}' not in row:
|
|
|
|
continue
|
|
|
|
rows.append(row)
|
|
|
|
break
|
|
|
|
|
|
|
|
df = pd.DataFrame(rows)
|
|
|
|
|
|
|
|
if "name" in df:
|
|
|
|
df["name"] = df["name"].fillna("train")
|
|
|
|
else:
|
|
|
|
df["name"] = "train"
|
|
|
|
|
|
|
|
df["group"] = str(path.parents[args.group_level])
|
|
|
|
df["group"] = df["group"] + "/" + df["name"]
|
|
|
|
|
|
|
|
dfs.append(df)
|
|
|
|
|
|
|
|
df = pd.concat(dfs)
|
|
|
|
|
2023-10-05 00:41:37 +00:00
|
|
|
if args.min_x is not None:
|
|
|
|
for model in args.models:
|
|
|
|
df = df[args.min_x < df[f'{model.name}.{args.xs}']]
|
|
|
|
|
|
|
|
if args.max_x is not None:
|
2023-09-02 21:29:53 +00:00
|
|
|
for model in args.models:
|
|
|
|
df = df[df[f'{model.name}.{args.xs}'] < args.max_x]
|
|
|
|
|
|
|
|
for gtag, gdf in sorted(
|
|
|
|
df.groupby("group"),
|
|
|
|
key=lambda p: (p[0].split("/")[-1], p[0]),
|
|
|
|
):
|
|
|
|
for model in args.models:
|
|
|
|
x = f'{model.name}.{args.xs}'
|
|
|
|
for ys in args.ys:
|
|
|
|
y = f'{model.name}.{ys}'
|
|
|
|
|
|
|
|
if gdf[y].isna().all():
|
|
|
|
continue
|
|
|
|
|
2023-10-05 00:41:37 +00:00
|
|
|
if args.min_y is not None:
|
|
|
|
gdf = gdf[args.min_y < gdf[y]]
|
2023-09-02 21:29:53 +00:00
|
|
|
if args.max_y is not None:
|
|
|
|
gdf = gdf[gdf[y] < args.max_y]
|
|
|
|
|
2024-09-25 01:05:10 +00:00
|
|
|
if args.ewm:
|
|
|
|
gdf[y] = gdf[y].ewm(args.ewm).mean()
|
|
|
|
elif args.rolling:
|
|
|
|
gdf[y] = gdf[y].rolling(args.rolling).mean()
|
2023-09-02 21:29:53 +00:00
|
|
|
|
|
|
|
gdf.plot(
|
|
|
|
x=x,
|
|
|
|
y=y,
|
|
|
|
label=f"{y}",
|
|
|
|
ax=plt.gca(),
|
|
|
|
marker="x" if len(gdf) < 100 else None,
|
|
|
|
alpha=0.7,
|
|
|
|
)
|
|
|
|
|
|
|
|
plt.gca().legend(
|
2024-09-25 01:05:10 +00:00
|
|
|
#loc="center left",
|
2023-09-02 21:29:53 +00:00
|
|
|
fancybox=True,
|
|
|
|
shadow=True,
|
2024-09-25 01:05:10 +00:00
|
|
|
#bbox_to_anchor=(1.04, 0.5),
|
2023-09-02 21:29:53 +00:00
|
|
|
)
|
|
|
|
|
2024-10-12 02:18:26 +00:00
|
|
|
def plot_entropies( entropies ):
|
|
|
|
"""
|
|
|
|
fig = plt.figure()
|
|
|
|
fig.set_figwidth( 16 * len(entropies) // cfg.dataset.frames_per_second )
|
|
|
|
"""
|
|
|
|
|
|
|
|
data = {}
|
|
|
|
|
|
|
|
for key in entropies[0][0].keys():
|
|
|
|
data[key] = [ e[0][key].item() if hasattr( e[0][key], "item" ) else e[0][key] for e in entropies ]
|
|
|
|
|
|
|
|
df = pd.DataFrame(data)
|
|
|
|
df.plot()
|
|
|
|
|
|
|
|
plt.gca().legend(
|
|
|
|
#loc="center left",
|
|
|
|
fancybox=True,
|
|
|
|
shadow=True,
|
|
|
|
#bbox_to_anchor=(1.04, 0.5),
|
|
|
|
)
|
|
|
|
|
|
|
|
out_path = cfg.rel_path / "metrics.png"
|
|
|
|
plt.savefig(out_path, bbox_inches="tight")
|
2023-09-02 21:29:53 +00:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--xs", default="engine_step")
|
|
|
|
parser.add_argument("--ys", nargs="+", default="")
|
|
|
|
parser.add_argument("--model", nargs="+", default="*")
|
|
|
|
|
2023-10-05 00:41:37 +00:00
|
|
|
parser.add_argument("--min-x", type=float, default=-float("inf"))
|
|
|
|
parser.add_argument("--min-y", type=float, default=-float("inf"))
|
2023-09-02 21:29:53 +00:00
|
|
|
parser.add_argument("--max-x", type=float, default=float("inf"))
|
|
|
|
parser.add_argument("--max-y", type=float, default=float("inf"))
|
2024-09-25 01:05:10 +00:00
|
|
|
|
|
|
|
parser.add_argument("--ewm", type=int, default=1024)
|
|
|
|
parser.add_argument("--rolling", type=int, default=None)
|
|
|
|
|
|
|
|
parser.add_argument("--size", type=str, default=None)
|
2023-09-02 21:29:53 +00:00
|
|
|
|
|
|
|
parser.add_argument("--filename", default="log.txt")
|
|
|
|
parser.add_argument("--group-level", default=1)
|
2024-06-09 16:39:43 +00:00
|
|
|
args, unknown = parser.parse_known_args()
|
2023-09-02 21:29:53 +00:00
|
|
|
|
2024-06-09 16:22:52 +00:00
|
|
|
path = cfg.rel_path / "logs"
|
2023-09-02 21:29:53 +00:00
|
|
|
paths = path.rglob(f"./*/{args.filename}")
|
|
|
|
|
2024-04-16 00:54:32 +00:00
|
|
|
args.models = [ model for model in cfg.model.get() if model.training and (args.model == "*" or model.name in args.model) ]
|
2023-09-02 21:29:53 +00:00
|
|
|
|
|
|
|
if args.ys == "":
|
2024-09-25 01:05:10 +00:00
|
|
|
args.ys = ["loss.nll"]
|
|
|
|
|
|
|
|
if args.size:
|
|
|
|
width, height = args.size.split("x")
|
|
|
|
plt.figure(figsize=(int(width), int(height)))
|
2023-09-02 21:29:53 +00:00
|
|
|
|
|
|
|
plot(paths, args)
|
|
|
|
|
2024-06-09 16:22:52 +00:00
|
|
|
out_path = cfg.rel_path / "metrics.png"
|
2023-09-02 21:29:53 +00:00
|
|
|
plt.savefig(out_path, bbox_inches="tight")
|