vall-e/vall_e/demo.py

203 lines
6.4 KiB
Python
Raw Normal View History

"""
A helper script to generate a demo page.
Layout as expected:
./data/demo/:
{speaker ID}:
out:
ours.wav (generated)
ms_valle.wav
yourtts.wav
prompt.txt (text to generate)
prompt.wav (reference clip to serve as the prompt)
reference.wav (ground truth utterance)
Will also generate samples from a provided datset, if requested.
"""
import argparse
import base64
import random
from pathlib import Path
from .inference import TTS
from .config import cfg
from .data import create_train_dataloader, create_val_dataloader
from .emb.qnt import decode_to_file
from tqdm import tqdm
def encode(path):
return "data:audio/wav;base64," + base64.b64encode(open(path, "rb").read()).decode('utf-8')
# Would be downright sugoi if I could incorporate this with into __main__
def main():
parser = argparse.ArgumentParser("VALL-E TTS Demo")
parser.add_argument("--yaml", type=Path, default=None)
parser.add_argument("--demo-dir", type=Path, default=None)
parser.add_argument("--skip-existing", action="store_true")
parser.add_argument("--sample-from-dataset", action="store_true")
parser.add_argument("--dataset-samples", type=int, default=0)
parser.add_argument("--audio-path-root", type=str, default=None)
parser.add_argument("--language", type=str, default="en")
parser.add_argument("--max-ar-steps", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-nar-levels", type=int, default=7)
parser.add_argument("--ar-temp", type=float, default=1.0)
parser.add_argument("--nar-temp", type=float, default=0.0)
parser.add_argument("--min-ar-temp", type=float, default=-1.0)
parser.add_argument("--min-nar-temp", type=float, default=-1.0)
parser.add_argument("--input-prompt-length", type=float, default=3.0)
parser.add_argument("--top-p", type=float, default=1.0)
parser.add_argument("--top-k", type=int, default=16)
parser.add_argument("--repetition-penalty", type=float, default=1.0)
parser.add_argument("--repetition-penalty-decay", type=float, default=0.0)
parser.add_argument("--length-penalty", type=float, default=0.0)
parser.add_argument("--beam-width", type=int, default=0)
parser.add_argument("--mirostat-tau", type=float, default=0)
parser.add_argument("--mirostat-eta", type=float, default=0)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--amp", action="store_true")
parser.add_argument("--dtype", type=str, default=None)
args = parser.parse_args()
tts = TTS( config=args.yaml, device=args.device, dtype=args.dtype, amp=args.amp )
if not args.demo_dir:
args.demo_dir = Path("./data/demo/")
entries = []
# pull from provided samples
sample_dir = args.demo_dir / "librispeech"
if sample_dir.exists():
speakers = [ dir for dir in sample_dir.iterdir() if dir.is_dir() ]
sources = ["ms_valle", "yourtts"]
# generate demo output
for dir in tqdm(speakers, desc=f"Generating demo for speaker"):
text = open(dir / "prompt.txt").read()
prompt = dir / "prompt.wav"
out_path = dir / "out" / "ours.wav"
entries.append((
text,
[ prompt, dir / "reference.wav", out_path ] + [ dir / "out" / f"{source}.wav" for source in sources ]
))
if args.skip_existing and out_path.exists():
continue
tts.inference(
text=text,
references=[prompt],
language=args.language,
out_path=out_path,
input_prompt_length=args.input_prompt_length,
max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels,
ar_temp=args.ar_temp, nar_temp=args.nar_temp,
min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp,
top_p=args.top_p, top_k=args.top_k,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
seed=args.seed,
tqdm=False,
)
entries = [
f'<tr><td>{text}</td>'+
"".join( [
f'<td><audio controls="controls" autobuffer="autobuffer"><source src="{args.audio_path_root + audio if args.audio_path_root else encode(audio)}"/></audio></td>'
for audio in audios
] )+
'</tr>'
for text, audios in entries
]
# read html template
html = open(args.demo_dir / "index.template.html", "r", encoding="utf-8").read()
# create html table, in one messy line
# replace in our template
html = html.replace(r"${ENTRIES}", "\n".join(entries) )
samples = []
# pull from dataset samples
if args.sample_from_dataset:
print("Loading dataloader...")
dataloader = create_train_dataloader()
print("Loaded dataloader.")
num = args.dataset_samples if args.dataset_samples else cfg.evaluation.size
length = len( dataloader.dataset )
for i in range( num ):
idx = random.randint( 0, length )
batch = dataloader.dataset[idx]
dir = args.demo_dir / "samples" / f'{i}'
(dir / "out").mkdir(parents=True, exist_ok=True)
text = batch["text_string"]
prompt = dir / "prompt.wav"
reference = dir / "reference.wav"
out_path = dir / "out" / "ours.wav"
decode_to_file( batch["proms"].to("cuda"), prompt, device="cuda" )
decode_to_file( batch["resps"].to("cuda"), reference, device="cuda" )
samples.append((
text,
[ prompt, reference, out_path ]
))
tts.inference(
text=text,
references=[prompt],
language=args.language,
out_path=out_path,
input_prompt_length=args.input_prompt_length,
max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels,
ar_temp=args.ar_temp, nar_temp=args.nar_temp,
min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp,
top_p=args.top_p, top_k=args.top_k,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
seed=args.seed,
tqdm=False,
)
samples = [
f'<tr><td>{text}</td>'+
"".join( [
f'<td><audio controls="controls" autobuffer="autobuffer"><source src="{args.audio_path_root + audio if args.audio_path_root else encode(audio)}"/></audio></td>'
for audio in audios
] )+
'</tr>'
for text, audios in samples
]
html = html.replace(r"${SAMPLES}", "\n".join(samples) )
open( args.demo_dir / "index.html", "w", encoding="utf-8" ).write( html )
if __name__ == "__main__":
main()