vall-e/vall_e/models/experimental.py

445 lines
14 KiB
Python
Raw Normal View History

2024-06-04 02:28:49 +00:00
"""
This is an experiment to:
* entertain a thought to try and abide by HF's transformers API (to benefit from caching better)
* conform to a single embedding (instead of a bunch of them) by folding/unfolding inputs
* stop trying to make a mixed AR+NAR model work since it seems lobotomized if I keep trying to enforce both recurrent and parallel inferencing (despite a penalty cost)
+ I will not cave and go with codebook patterns, not yet.
"""
from ..config import cfg
2024-06-04 02:28:49 +00:00
from ..data import fold_inputs, unfold_outputs
import torch
from torch.nn.utils.rnn import pad_sequence
from torch import Tensor
from torch.nn import CrossEntropyLoss
2024-06-04 02:28:49 +00:00
from torch.utils.checkpoint import checkpoint
import random
import math
from einops import rearrange
from tqdm import trange
AVAILABLE_ARCHES = []
try:
from transformers import LlamaForCausalLM, LlamaConfig
AVAILABLE_ARCHES.append("llama")
except Exception as e:
print("Error importing `llama` arch:", e)
pass
2024-06-04 05:07:00 +00:00
try:
from .retnet_hf import RetNetConfig
from ..ext.retnet_hf.modeling_retnet import RetNetForCausalLM
AVAILABLE_ARCHES.append("retnet")
except Exception as e:
print("Error importing `retnet` arch:", e)
pass
try:
2024-06-04 02:28:49 +00:00
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
def MambaMixelModel_forward(self, input_ids, inference_params=None, **mixer_kwargs):
hidden_states = self.embedding(input_ids)
residual = None
for layer in self.layers:
if self.gradient_checkpointing and hidden_states.requires_grad:
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
else:
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
# Set prenorm=False here since we don't need the residual
hidden_states = MambaLayerNormFn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
)
return hidden_states
MambaMixelModel.forward = MambaMixelModel_forward
AVAILABLE_ARCHES.append("mamba")
except Exception as e:
print("Error importing `mamba` arch:", e)
pass
SELECTED_ARCH = cfg.model.arch_type
if SELECTED_ARCH not in AVAILABLE_ARCHES:
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
if SELECTED_ARCH == "mamba":
LlmArchClass = MambaLMHeadModel
elif SELECTED_ARCH == "llama":
LlmArchClass = LlamaForCausalLM
2024-06-04 05:07:00 +00:00
elif SELECTED_ARCH == "retnet":
LlmArchClass = RetNetForCausalLM
else:
raise ValueError(f"Requesting arch `{SELECTED_ARCH}` but not available")
class Model(LlmArchClass):
def __init__(
self,
d_model=1024,
n_layers=12,
n_heads=16,
p_dropout=0.1,
2024-06-04 02:28:49 +00:00
config = None,
):
2024-06-04 02:28:49 +00:00
self.hyper_config = config
hf_attention = config.attention if config is not None else None
gradient_checkpointing = config.gradient_checkpointing if config is not None else True
2024-06-04 05:07:00 +00:00
vocab_size = 256 + (1024 * cfg.model.max_levels) + (1024 * cfg.model.max_levels) + 1
if SELECTED_ARCH == "llama":
super().__init__(config=LlamaConfig(
2024-06-04 05:07:00 +00:00
vocab_size=vocab_size,
hidden_size=d_model,
2024-06-04 05:07:00 +00:00
max_position_embeddings=cfg.dataset.frames_per_second * cfg.model.max_levels * 60, # max-length of 60 seconds
intermediate_size=d_model*4,
num_hidden_layers=n_layers,
num_attention_heads=n_heads,
attention_dropout=p_dropout,
num_key_value_heads=n_heads,
2024-06-04 05:07:00 +00:00
sliding_window=cfg.dataset.frames_per_second * cfg.model.max_levels * 12,
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
2024-06-04 02:28:49 +00:00
attn_implementation=hf_attention,
))
2024-06-04 02:28:49 +00:00
if gradient_checkpointing:
self.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
use_reentrant=False
))
2024-06-04 05:07:00 +00:00
elif SELECTED_ARCH == "retnet":
super().__init__(config=RetNetConfig(
vocab_size=vocab_size,
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
decoder_retention_heads=n_heads,
decoder_ffn_embed_dim=d_model * 4,
decoder_layers=n_layers,
dropout=p_dropout,
checkpoint_activations=gradient_checkpointing,
activation_fn="gelu",
use_layernorm=False,
use_biases=False,
use_glu=True,
#chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0,
#recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0,
#no_output_layer=True,
#rotary_embedding_base=self.rotary_embedding_base, # 10000
decoder_normalize_before=True,
))
elif SELECTED_ARCH == "mamba":
super().__init__(config=MambaConfig(
2024-06-04 05:07:00 +00:00
vocab_size=vocab_size,
d_model=d_model,
n_layer=n_layers*2,
2024-06-04 02:28:49 +00:00
#ssm_cfg={"layer": "Mamba2"}, # will ALWAYS nan
))
2024-06-04 02:28:49 +00:00
self.backbone.gradient_checkpointing = gradient_checkpointing
def generate(
self,
*args,
**kwargs
):
if SELECTED_ARCH == "mamba":
kwargs["cg"] = True
if "attention_mask" in kwargs:
kwargs.pop("attention_mask")
if "do_sample" in kwargs:
kwargs.pop("do_sample")
2024-06-04 19:20:57 +00:00
return super().generate(*args, **kwargs)
def forward(
self,
*args,
**kwargs,
):
if SELECTED_ARCH == "mamba":
if "attention_mask" in kwargs:
kwargs.pop("attention_mask")
output = super().forward(*args, **kwargs)
2024-06-04 05:07:00 +00:00
if SELECTED_ARCH in ["llama", "retnet"]:
if output.loss is not None:
self.loss = dict(
nll = output.loss,
)
elif SELECTED_ARCH == "mamba":
if "labels" in kwargs:
labels = kwargs.pop("labels")
2024-06-04 05:07:00 +00:00
logits = output.logits
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
self.loss = dict(
nll = loss,
)
return output
def example_usage():
cfg.trainer.backend = "local"
cfg.hyperparameters.gradient_accumulation_steps = 1
if cfg.audio_backend == "dac":
cfg.sample_rate = 44_000
from functools import partial
from einops import repeat
from tqdm import tqdm
from ..emb.qnt import decode_to_file, unload_model
from ..engines import Engine
from ..utils import wrapper as ml
import numpy as np
import re
device = "cuda"
def tokenize(content):
return torch.tensor( cfg.tokenizer.encode(content) )
def _load_quants(path) -> Tensor:
qnt = np.load(path, allow_pickle=True)[()]
2024-06-04 05:07:00 +00:00
return torch.from_numpy(qnt["codes"].astype(np.int16))[0, :cfg.model.max_levels, :].t().to(torch.int16)
qnt = _load_quants(f"./data/qnt.{'dac' if cfg.audio_backend == 'dac' else 'enc'}")
text_list = [
tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
#tokenize("ˈaɪ wɪl nˌɑːt ˈæsk ɐ sˈɛkənd tˈaɪm").to(device),
]
prom_list = [
qnt[:cfg.dataset.frames_per_second, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
resp_list = [
qnt[:, :].to(device),
#qnt[cfg.dataset.frames_per_second:, :].to(device),
#qnt[:cfg.dataset.frames_per_second, :].to(device),
]
text_list = text_list[:1]
prom_list = prom_list[:1]
resp_list = resp_list[:1]
if False:
output_list = [ [] ]
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=output_list, targ_list=resp_list, quant_levels=[0])
unfolded = unfold_outputs( input_ids, quant_levels=[0])
print( 0, "inputs:", input_ids.shape, input_ids )
print( 0, "outputs:", unfolded["resp_list"][0].shape, unfolded["resp_list"][0] )
output_list[0].append( resp_list[0][:, 0] )
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=output_list, targ_list=resp_list, quant_levels=[1])
unfolded = unfold_outputs( input_ids, quant_levels=[1])
print( 1, "inputs:", input_ids.shape, input_ids )
print( 1, "outputs:", unfolded["resp_list"][0].shape, unfolded["resp_list"][0] )
output_list[0].append( resp_list[0][:, 1] )
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=output_list, targ_list=resp_list, quant_levels=[2])
unfolded = unfold_outputs( input_ids, quant_levels=[2])
print( 2, "inputs:", input_ids.shape, input_ids )
print( 2, "outputs:", unfolded["resp_list"][0].shape, unfolded["resp_list"][0] )
output_list[0].append( resp_list[0][:, 2] )
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=output_list, targ_list=resp_list, quant_levels=[3])
unfolded = unfold_outputs( input_ids, quant_levels=[3])
print( 3, "inputs:", input_ids.shape, input_ids )
print( 3, "outputs:", unfolded["resp_list"][0].shape, unfolded["resp_list"][0] )
output_list[0].append( resp_list[0][:, 3] )
return
kwargs = {}
model = Model(**kwargs).to(device)
steps = 50 if cfg.model.interleave else 250
optimizer = cfg.hyperparameters.optimizer.lower() if cfg.cfg_path is not None else "prodigy"
scheduler = cfg.hyperparameters.scheduler.lower() if cfg.cfg_path is not None else ""
learning_rate = cfg.hyperparameters.learning_rate if cfg.cfg_path is not None else None
if cfg.optimizations.dadaptation:
# do not combine the two
if scheduler == "schedulefree":
scheduler = ""
learning_rate = 1.0
if optimizer == "prodigy":
if learning_rate is None:
learning_rate = 1.0
optimizer = ml.Prodigy
elif optimizer == "adagrad":
if learning_rate is None:
learning_rate = 1.0e-2
optimizer = ml.Adagrad
elif optimizer == "adamw":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.AdamW
elif optimizer == "sdg":
if learning_rate is None:
learning_rate = 1.0e-4
optimizer = ml.SGD
else:
raise ValueError(f"Unrecognized optimizer: {optimizer}")
print("Optimizer:", optimizer, "\tLearning rate:", learning_rate)
optimizer = optimizer(model.parameters(), lr=learning_rate)
if scheduler == "schedulefree":
if isinstance(optimizer, ml.AdamW):
scheduler = ml.schedulefree.AdamWScheduleFree
elif isinstance(optimizer, ml.SGD):
scheduler = ml.schedulefree.SGDScheduleFree
else:
scheduler = None
if scheduler is not None:
print("Scheduler:", scheduler)
optimizer = scheduler( model.parameters(), lr = learning_rate )
if cfg.optimizations.replace and cfg.optimizations.linear:
model = ml.replace_linear( model )
if cfg.optimizations.replace and cfg.optimizations.embedding:
model = ml.replace_embedding( model )
engine = Engine(model=model, optimizer=optimizer)
torch.save( {
'module': model.state_dict()
}, f"./data/{SELECTED_ARCH}.pth" )
print(f"{LlmArchClass} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
@torch.inference_mode()
def sample( name, steps=cfg.model.max_levels*cfg.dataset.frames_per_second*6 ):
engine.eval()
target_length = 0
resp_list = None
if cfg.model.interleave:
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list)
output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=steps, eos_token_id=3, do_sample=False)
unfolded = unfold_outputs( output )
resp_list = unfolded["resp_list"]
else:
resp_list = [ [] for _ in range(len(text_list)) ]
for l in range(cfg.model.max_levels):
quant_levels = [ [ l ] for _ in range(len(text_list)) ]
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resp_list, quant_levels=quant_levels, experimental=True)
min_length = len(input_ids[0]) + 1
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
min_length=min_length,
max_length=min_length+steps*2,
eos_token_id=3,
do_sample=False
)
unfolded = unfold_outputs( output, quant_levels=quant_levels )
if l == 0:
steps = 0
for batch, resp in enumerate(unfolded["resp_list"]):
length = resp.shape[-1]
# store length
if l == 0:
steps = max( steps, length )
# pad
else:
resp = resp[:steps]
if length < steps:
resp = torch.cat([ resp, torch.Tensor([ 0 for _ in range(steps-length) ]).to(resp) ])
resp_list[batch].append( resp )
for i, resp in enumerate( resp_list ):
resp_list[i] = torch.stack( resp ).t()
for i, batch in enumerate(resp_list):
_ = decode_to_file(batch.to(device=device), f"data/{SELECTED_ARCH}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
unload_model()
def train():
engine.train()
t = trange(steps)
for i in t:
stats = {"step": i}
batch_size = len(text_list)
quant_levels = None if cfg.model.interleave else torch.randint(0, cfg.model.max_levels, (batch_size,))
if quant_levels is not None:
resps_list = [ [] if l == 0 else resp for l, resp in zip(quant_levels, resp_list) ]
else:
resps_list = [ resp for resp in resp_list ]
input_ids, attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resps_list, targ_list=resp_list, quant_levels=quant_levels)
target_ids, target_attention_mask = fold_inputs(text_list=text_list, prom_list=prom_list, resp_list=resp_list, targ_list=resp_list, ignore_index=-100, quant_levels=quant_levels)
stats |= engine.traverse(input_ids=input_ids, labels=target_ids, attention_mask=attention_mask)
stats |= {"grad_norm": engine.get_global_grad_norm()}
tqdm.write(f"{stats}")
torch.save( {
'module': model.state_dict()
}, f"./data/{SELECTED_ARCH}.pth" )
#sample("init", 5)
train()
sample("final")
if __name__ == "__main__":
example_usage()