added option to use SGD optimizer through the YAML, added option to pass in additional optimizer parameters through the YAML, added experimental unified AR+NAR model (does not seem fruitful in testing)
This commit is contained in:
parent
451726fdd5
commit
100ca6b7d0
|
@ -254,6 +254,10 @@ class Models:
|
|||
def ar(self):
|
||||
return self.get("ar")
|
||||
|
||||
@property
|
||||
def ar_nar(self):
|
||||
return self.get("ar+nar")
|
||||
|
||||
@property
|
||||
def nar(self):
|
||||
return self.get("nar")
|
||||
|
@ -283,6 +287,7 @@ class Hyperparameters:
|
|||
gradient_clipping: int = 100
|
||||
|
||||
optimizer: str = "Adamw"
|
||||
optimizer_params: dict = field(default_factory=lambda: {})
|
||||
learning_rate: float = 3.25e-4
|
||||
|
||||
scheduler_type: str = ""
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
from .ar import AR
|
||||
from .nar import NAR
|
||||
from .ar_nar import AR_NAR
|
||||
|
||||
def get_model(cfg):
|
||||
if cfg.name == "ar":
|
||||
Model = AR
|
||||
elif cfg.name == "nar":
|
||||
Model = NAR
|
||||
elif cfg.name == "ar+nar":
|
||||
Model = AR_NAR
|
||||
else:
|
||||
raise f"invalid model name: {cfg.name}"
|
||||
name = cfg.name
|
||||
|
|
|
@ -13,10 +13,6 @@ class AR(Base):
|
|||
def causal(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def use_stop_token(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def norm_type(self):
|
||||
return "ln"
|
||||
|
@ -45,10 +41,6 @@ class AR(Base):
|
|||
def n_tasks(self) -> int:
|
||||
return cfg.models.tasks
|
||||
|
||||
@property
|
||||
def resp_loss_only(self) -> bool:
|
||||
return False
|
||||
|
||||
@property
|
||||
def recurrent_chunk_size(self) -> int:
|
||||
if cfg.mode == "training":
|
||||
|
@ -103,8 +95,6 @@ class AR(Base):
|
|||
resps_list=self._unsqueeze_list(resps_list),
|
||||
targ_list=resps_list,
|
||||
quant_levels=None,
|
||||
shift_targ_list=True,
|
||||
return_all_resp=False,
|
||||
)
|
||||
|
||||
device = text_list[0].device
|
||||
|
@ -122,9 +112,10 @@ class AR(Base):
|
|||
# get next in sequence
|
||||
|
||||
r = super().forward(
|
||||
text_list,
|
||||
proms_list,
|
||||
self._unsqueeze_list(resps_list),
|
||||
text_list=text_list,
|
||||
proms_list=proms_list,
|
||||
resps_list=self._unsqueeze_list(resps_list),
|
||||
quant_levels=None,
|
||||
sampling_temperature=sampling_temperature,
|
||||
state=state
|
||||
)
|
||||
|
@ -188,12 +179,14 @@ def example_usage():
|
|||
'n_heads': 16,
|
||||
'n_layers': 24,
|
||||
}
|
||||
|
||||
try:
|
||||
kwargs['config'] = cfg.models.ar
|
||||
except Exception as e:
|
||||
pass
|
||||
pass
|
||||
|
||||
model = AR(**kwargs).to(device)
|
||||
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4))
|
||||
engine = Engine(model=model, optimizer=torch.optim.SGD(model.parameters(), lr=0.1))
|
||||
|
||||
def sample( name, steps=400 ):
|
||||
engine.eval()
|
||||
|
|
258
vall_e/models/ar_nar.py
Normal file
258
vall_e/models/ar_nar.py
Normal file
|
@ -0,0 +1,258 @@
|
|||
from ..config import cfg
|
||||
from .base import Base, list_to_tensor, Categorical
|
||||
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
import random
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
from tqdm import trange
|
||||
|
||||
class AR_NAR(Base):
|
||||
@property
|
||||
def causal(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def norm_type(self):
|
||||
return "ln"
|
||||
|
||||
@property
|
||||
def arch_type(self) -> str:
|
||||
if hasattr(self, "config") and self.config:
|
||||
return self.config.arch_type
|
||||
return cfg.models.ar_nar.arch_type
|
||||
|
||||
@property
|
||||
def n_prom_levels(self) -> int:
|
||||
return cfg.models.prom_levels
|
||||
|
||||
@property
|
||||
def n_resp_levels(self) -> int:
|
||||
if hasattr(self, "config") and self.config:
|
||||
return self.config.resp_levels
|
||||
return cfg.models.ar_nar.resp_levels
|
||||
|
||||
@property
|
||||
def n_max_levels(self) -> int:
|
||||
return cfg.models.max_levels
|
||||
|
||||
@property
|
||||
def n_tasks(self) -> int:
|
||||
return cfg.models.tasks
|
||||
|
||||
@property
|
||||
def recurrent_chunk_size(self) -> int:
|
||||
if cfg.mode == "training":
|
||||
return 0
|
||||
return cfg.inference.recurrent_chunk_size
|
||||
|
||||
@property
|
||||
def interleave(self) -> bool:
|
||||
if hasattr(self, "config") and self.config:
|
||||
return self.config.interleave
|
||||
return False
|
||||
|
||||
def _prune(self, l: Tensor):
|
||||
indices = (l == self.stop_token).nonzero()
|
||||
if len(indices) == 0:
|
||||
return l
|
||||
return l[: indices.min().item()]
|
||||
|
||||
def _interleave( self, codes ):
|
||||
if not self.interleave:
|
||||
return codes
|
||||
|
||||
return codes.flatten()
|
||||
|
||||
def _deinterleave( self, codes, length = 0 ):
|
||||
if not self.interleave:
|
||||
return codes
|
||||
|
||||
return torch.unflatten( codes[:codes.shape[0] // self.n_prom_levels * self.n_prom_levels], 0, ( codes.shape[0] // self.n_prom_levels, self.n_prom_levels ) )
|
||||
|
||||
@staticmethod
|
||||
def _unsqueeze_list(x_list, axis=-1):
|
||||
return [x.unsqueeze(dim=axis) for x in x_list]
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor] | None = None,
|
||||
max_steps: int = 1000,
|
||||
sampling_temperature: float = 0.0,
|
||||
):
|
||||
device = text_list[0].device
|
||||
batch_size = len(text_list)
|
||||
|
||||
# is training or NAR
|
||||
if resps_list is not None:
|
||||
n_levels_set = {r.shape[-1] for r in resps_list}
|
||||
n_levels = next(iter(n_levels_set))
|
||||
|
||||
# is training
|
||||
if n_levels == self.n_resp_levels:
|
||||
if random.random() < 0.5:
|
||||
quant_levels = None
|
||||
|
||||
targ_list = [r[..., 0] for r in resps_list] # guarantees we only have the first levels
|
||||
resps_list = self._unsqueeze_list(targ_list)
|
||||
else:
|
||||
quant_levels = torch.randint(1, self.n_resp_levels, (batch_size,))
|
||||
|
||||
targ_list = [o[..., l] for o, l in zip(resps_list, quant_levels)]
|
||||
resps_list = [o[..., : l] for o, l in zip(resps_list, quant_levels)]
|
||||
|
||||
if quant_levels is not None:
|
||||
quant_levels.to(device=device)
|
||||
|
||||
return super().forward(
|
||||
text_list=text_list,
|
||||
proms_list=proms_list,
|
||||
resps_list=resps_list,
|
||||
targ_list=targ_list,
|
||||
quant_levels=quant_levels,
|
||||
)
|
||||
# is NAR
|
||||
prev_list = resps_list
|
||||
|
||||
while True:
|
||||
level = prev_list[0].shape[-1] - 1
|
||||
|
||||
if level >= self.n_resp_levels:
|
||||
break
|
||||
|
||||
quant_levels = torch.full((len(text_list),), level, device=device)
|
||||
|
||||
resps_list = super().forward(
|
||||
text_list,
|
||||
proms_list,
|
||||
prev_list,
|
||||
quant_levels=quant_levels,
|
||||
sampling_temperature=sampling_temperature,
|
||||
)
|
||||
|
||||
prev_list = [
|
||||
torch.cat([rs, r.unsqueeze(-1)], dim=-1)
|
||||
for rs, r in zip(prev_list, resps_list)
|
||||
]
|
||||
|
||||
return prev_list
|
||||
|
||||
# is AR
|
||||
resps_list = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
|
||||
stopped = torch.zeros(batch_size, device=device).bool()
|
||||
|
||||
state = {} if cfg.inference.recurrent_forward else None
|
||||
|
||||
if self.interleave:
|
||||
max_steps *= self.n_prom_levels
|
||||
|
||||
for n in trange(max_steps // max(1, self.recurrent_chunk_size)):
|
||||
# get next in sequence
|
||||
|
||||
r = super().forward(
|
||||
text_list,
|
||||
proms_list,
|
||||
self._unsqueeze_list(resps_list),
|
||||
sampling_temperature=sampling_temperature,
|
||||
state=state
|
||||
)
|
||||
|
||||
# append tokens
|
||||
for i, ri in enumerate(r):
|
||||
if self.stop_token in ri:
|
||||
stopped[i] = True
|
||||
resps_list[i] = torch.cat([resps_list[i], ri])
|
||||
|
||||
# stop token found
|
||||
stopped |= r == self.stop_token
|
||||
if stopped.all().item():
|
||||
break
|
||||
|
||||
return [self._prune(r) for r in resps_list]
|
||||
|
||||
|
||||
def example_usage():
|
||||
cfg.trainer.backend = "local"
|
||||
from functools import partial
|
||||
|
||||
from einops import repeat
|
||||
|
||||
from ..emb.qnt import decode_to_file
|
||||
from ..engines import Engine
|
||||
from tqdm import tqdm
|
||||
|
||||
device = "cuda"
|
||||
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
|
||||
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
|
||||
def tokenize(content, lang_marker="en"):
|
||||
split = content.split(" ")
|
||||
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
|
||||
return torch.tensor([*map(symmap.get, phones)]).to()
|
||||
|
||||
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
|
||||
|
||||
text_list = [
|
||||
#torch.tensor([1, 2, 3], device=device),
|
||||
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
|
||||
]
|
||||
proms_list = [
|
||||
#x8(torch.tensor([1, 2, 3], device=device)),
|
||||
qnt.to(device),
|
||||
]
|
||||
resps_list = [
|
||||
qnt.to(device),
|
||||
]
|
||||
|
||||
text_list = text_list[:1]
|
||||
proms_list = proms_list[:1]
|
||||
resps_list = resps_list[:1]
|
||||
|
||||
kwargs = {
|
||||
'n_tokens': 1024,
|
||||
'd_model': 1024,
|
||||
'n_heads': 16,
|
||||
'n_layers': 24,
|
||||
}
|
||||
|
||||
"""
|
||||
try:
|
||||
kwargs['config'] = cfg.models.ar_nar
|
||||
except Exception as e:
|
||||
pass
|
||||
"""
|
||||
|
||||
model = AR_NAR(**kwargs).to(device)
|
||||
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=0.001))
|
||||
|
||||
def sample( name, steps=600 ):
|
||||
engine.eval()
|
||||
resps_list = engine(text_list, proms_list, max_steps=steps, sampling_temperature=0.95 )
|
||||
|
||||
for i, o in enumerate(resps_list):
|
||||
_ = decode_to_file(o, f"data/ar.{i}.{name}.wav", device=device)
|
||||
|
||||
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
||||
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.2 )
|
||||
|
||||
for i, o in enumerate(resps_list):
|
||||
_ = decode_to_file(o, f"data/ar+nar.{i}.{name}.wav", device=device)
|
||||
|
||||
def train():
|
||||
engine.train()
|
||||
t = trange(5000)
|
||||
for i in t:
|
||||
stats = {"step": i}
|
||||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||||
|
||||
tqdm.write(f"{stats}")
|
||||
|
||||
sample("init", 75)
|
||||
train()
|
||||
sample("final")
|
||||
|
||||
if __name__ == "__main__":
|
||||
example_usage()
|
|
@ -94,14 +94,6 @@ class Base(nn.Module):
|
|||
def causal(self) -> bool:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def n_resp_levels(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def use_stop_token(self) -> bool:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def arch_type(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
@ -114,6 +106,10 @@ class Base(nn.Module):
|
|||
def n_prom_levels(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def n_resp_levels(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def n_max_levels(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
@ -122,10 +118,6 @@ class Base(nn.Module):
|
|||
def n_tasks(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def resp_loss_only(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def recurrent_chunk_size(self) -> int:
|
||||
raise NotImplementedError
|
||||
|
@ -134,6 +126,24 @@ class Base(nn.Module):
|
|||
def interleave(self) -> bool:
|
||||
return False
|
||||
|
||||
@property
|
||||
def stop_token(self):
|
||||
if not self.causal:
|
||||
raise ValueError("Not using stop token!")
|
||||
return self.n_tokens
|
||||
|
||||
@property
|
||||
def ignore_index(self):
|
||||
return -100
|
||||
|
||||
@staticmethod
|
||||
def _samplewise_merge_tensors(*l, sep: Tensor | None):
|
||||
if sep is None:
|
||||
cat = torch.cat
|
||||
else:
|
||||
cat = partial(_join, sep=sep)
|
||||
return [*map(cat, zip(*l))]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_tokens: int = 1024,
|
||||
|
@ -155,7 +165,7 @@ class Base(nn.Module):
|
|||
|
||||
# +1 to include the stop token
|
||||
n_prom_tokens = n_tokens + (self.n_tasks - 1) # - 1 because tts is an inherent task
|
||||
n_resp_tokens = n_tokens + (1 if self.use_stop_token else 0) # AR requires a stop token to... know when to stop
|
||||
n_resp_tokens = n_tokens + (1 if self.causal else 0) # AR requires a stop token to... know when to stop
|
||||
|
||||
self.text_emb = Embedding(n_tokens, d_model)
|
||||
self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model)
|
||||
|
@ -208,24 +218,6 @@ class Base(nn.Module):
|
|||
ignore_index=self.ignore_index,
|
||||
)
|
||||
|
||||
@property
|
||||
def stop_token(self):
|
||||
if not self.use_stop_token:
|
||||
raise ValueError("Not using stop token!")
|
||||
return self.n_tokens
|
||||
|
||||
@property
|
||||
def ignore_index(self):
|
||||
return -100
|
||||
|
||||
@staticmethod
|
||||
def _samplewise_merge_tensors(*l, sep: Tensor | None):
|
||||
if sep is None:
|
||||
cat = torch.cat
|
||||
else:
|
||||
cat = partial(_join, sep=sep)
|
||||
return [*map(cat, zip(*l))]
|
||||
|
||||
@overload
|
||||
def forward(
|
||||
self,
|
||||
|
@ -234,9 +226,6 @@ class Base(nn.Module):
|
|||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: Literal[False] = False,
|
||||
return_all_resp: Literal[False] = False,
|
||||
sampling_temperature: float = 1.0,
|
||||
) -> Tensor:
|
||||
...
|
||||
|
@ -249,9 +238,6 @@ class Base(nn.Module):
|
|||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: Literal[True] = True,
|
||||
return_all_resp: Literal[True] = True,
|
||||
sampling_temperature: float = 1.0,
|
||||
) -> list[Tensor]:
|
||||
...
|
||||
|
@ -262,28 +248,12 @@ class Base(nn.Module):
|
|||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: bool = False,
|
||||
return_all_resp: bool = False,
|
||||
sampling_temperature: float = 1.0,
|
||||
|
||||
state: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
text_list: [t] * b
|
||||
proms_list: [t' l] * b, l quantization levels.
|
||||
resps_list: [t'' l] * b, l quantization levels.
|
||||
targ_list: [t''] * b, one quantization level only; when given, loss will be computed
|
||||
quant_levels: specify which quant_levels to feed forward, used in NAR mode.
|
||||
shift_targ_list: whether to shift target list when computing loss. True if AR.
|
||||
return_all_resp: True if NAR.
|
||||
sampling_temperature: a lower temperature makes the result more robust but less diverse.
|
||||
Returns:
|
||||
y: sampled tokens
|
||||
"""
|
||||
|
||||
x_list = self._samplewise_merge_tensors(
|
||||
self.text_emb(text_list),
|
||||
self.proms_emb(proms_list),
|
||||
|
@ -334,17 +304,16 @@ class Base(nn.Module):
|
|||
|
||||
# process each batch
|
||||
for i in range(len(text_prom_list)):
|
||||
# for the NAR, ignore completely computing the loss against the text prompt
|
||||
if self.resp_loss_only:
|
||||
text_prom_list[i][:] = self.ignore_index
|
||||
|
||||
# for the AR, shift the text/input prompt into the future by 1, and ignore the rolled back text token
|
||||
else:
|
||||
if quant_levels is None:
|
||||
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
|
||||
text_prom_list[i][-1] = self.ignore_index
|
||||
# for the NAR, ignore completely computing the loss against the text prompt
|
||||
else:
|
||||
text_prom_list[i][:] = self.ignore_index
|
||||
|
||||
# adjust the target sequence if needed for the AR
|
||||
if shift_targ_list:
|
||||
if quant_levels is None:
|
||||
# creates a copy because this is aliased against input response sequence
|
||||
targ_list = [*targ_list]
|
||||
# shift the target response into the future by 1, and mark the rolled back token / last token as a stop token
|
||||
|
@ -370,10 +339,11 @@ class Base(nn.Module):
|
|||
)
|
||||
|
||||
# return the entire generated token string
|
||||
return_all = False
|
||||
if return_all:
|
||||
logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
# return the entire generated response
|
||||
elif return_all_resp:
|
||||
elif quant_levels is not None:
|
||||
logits = [hi[-li:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
# return the last chunkwise piece
|
||||
elif self.causal and self.recurrent_chunk_size > 0:
|
||||
|
|
|
@ -11,10 +11,6 @@ class NAR(Base):
|
|||
def causal(self):
|
||||
return False
|
||||
|
||||
@property
|
||||
def use_stop_token(self):
|
||||
return False
|
||||
|
||||
@property
|
||||
def arch_type(self) -> str:
|
||||
if hasattr(self, "config") and self.config:
|
||||
|
@ -43,10 +39,6 @@ class NAR(Base):
|
|||
def n_tasks(self) -> int:
|
||||
return cfg.models.tasks
|
||||
|
||||
@property
|
||||
def resp_loss_only(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def recurrent_chunk_size(self) -> int:
|
||||
return 0
|
||||
|
|
|
@ -62,16 +62,27 @@ def load_engines(invert=False):
|
|||
optimizer = None
|
||||
lr_scheduler = None
|
||||
|
||||
# yuck, should instead check be optimier == "adamw" and backend != "deepspeed"
|
||||
# and then have ds_cfg pass in the config flag to use pytorch adamw
|
||||
# I genuinely cannot validate if this ever actually gets used in DeepSpeed
|
||||
# cfg.deepspeed.torch_adam
|
||||
if (cfg.trainer.backend == "local" and cfg.hyperparameters.optimizer.lower() == "adamw") or (cfg.trainer.backend == "deepspeed" and cfg.hyperparameters.optimizer.lower() == "adamw-torch"):
|
||||
params = {
|
||||
"lr": cfg.hyperparameters.learning_rate,
|
||||
"betas": (0.9, 0.96),
|
||||
"eps": 1e-07,
|
||||
"weight_decay": 0.01,
|
||||
}
|
||||
params.update(cfg.hyperparameters.optimizer_params)
|
||||
optimizer = ml.AdamW(
|
||||
model.parameters(),
|
||||
lr=cfg.hyperparameters.learning_rate,
|
||||
betas=(0.9, 0.96),
|
||||
eps=1e-07,
|
||||
weight_decay=0.01,
|
||||
**params,
|
||||
)
|
||||
elif (cfg.trainer.backend == "local" and cfg.hyperparameters.optimizer.lower() == "sgd") or (cfg.trainer.backend == "deepspeed" and cfg.hyperparameters.optimizer.lower() == "sgd-torch"):
|
||||
params = {
|
||||
"lr": cfg.hyperparameters.learning_rate,
|
||||
}
|
||||
params.update(cfg.hyperparameters.optimizer_params)
|
||||
optimizer = ml.SGD(
|
||||
model.parameters(),
|
||||
**params,
|
||||
)
|
||||
|
||||
if not model._cfg.training:
|
||||
|
|
|
@ -25,14 +25,17 @@ if cfg.bitsandbytes.enabled:
|
|||
self.sparse,
|
||||
)).to(self.weight.dtype) )
|
||||
|
||||
Adam = torch.optim.Adam
|
||||
AdamW = torch.optim.AdamW
|
||||
|
||||
if cfg.bitsandbytes.enabled:
|
||||
import bitsandbytes as bnb
|
||||
|
||||
Adam = bnb.optim.Adam
|
||||
AdamW = bnb.optim.AdamW
|
||||
SGD = bnb.optim.SGD
|
||||
else:
|
||||
Adam = torch.optim.Adam
|
||||
AdamW = torch.optim.AdamW
|
||||
SGD = torch.optim.SGD
|
||||
|
||||
# handles generically converting to a specific tensor type and converting back (implemented solely for bfloat16)
|
||||
@contextmanager
|
||||
|
@ -72,4 +75,5 @@ if cfg.bitsandbytes.injects and cfg.bitsandbytes.enabled:
|
|||
torch.nn.Embedding = Embedding
|
||||
|
||||
torch.optim.Adam = Adam
|
||||
torch.optim.AdamW = AdamW
|
||||
torch.optim.AdamW = AdamW
|
||||
torch.optim.SGD = SGD
|
Loading…
Reference in New Issue
Block a user