some cleanup, fixed the wrapper attention to explicitly use other sdpa backends

This commit is contained in:
mrq 2024-08-03 19:51:00 -05:00
parent 9564ecda43
commit 11fa3da665
9 changed files with 171 additions and 259 deletions

View File

@ -16,9 +16,6 @@ Besides a working PyTorch environment, the only hard requirement is [`espeak-ng`
## Install
> [!NOTE]
> There seems to be some form of regression in fancier attention mechanisms in some environments where you might need to explicitly set `attention` to `flash_attention_2` or `sdpa`.
Simply run `pip install git+https://git.ecker.tech/mrq/vall-e` or `pip install git+https://github.com/e-c-k-e-r/vall-e`.
I've tested this repo under Python versions `3.10.9`, `3.11.3`, and `3.12.3`.
@ -30,7 +27,7 @@ I've tested this repo under Python versions `3.10.9`, `3.11.3`, and `3.12.3`.
My pre-trained weights can be acquired from [here](https://huggingface.co/ecker/vall-e).
A script to setup a proper environment and download the weights can be invoked with `./scripts/setup.sh`
A script to setup a proper environment and download the weights can be invoked with `./scripts/setup.sh`. This will automatically create a `venv`, and download the weights and config file to the right place.
## Train

View File

@ -1,7 +0,0 @@
#!/bin/bash
`dirname $0`/setup.sh
wget -P ./training/valle/ "https://huggingface.co/ecker/vall-e/resolve/main/data.tar.gz"
wget -P ./training/valle/ "https://huggingface.co/ecker/vall-e/resolve/main/.cache.tar.gz"
tar -xzf ./training/valle/data.tar.gz -C "./training/valle/" data.h5
tar -xzf ./training/valle/.cache.tar.gz -C "./training/valle/"

View File

@ -223,6 +223,10 @@ class ModelExperimentalSettings:
causal_size: int = 1 # experimental setting to see if I can just do parallel decoding in chunks instead of one-at-a-time without resorting to exotic solutions
# VALL-E 2's approach of "combining token embeddings to group them" sounds terribad for a shared AR/NAR model
# however, introducing partial parallel decoding for the AR maybe maybe MAYBE might help try and unify the AR/NAR tasks better, MAYBE
# it just seems like a bitch to try and train something worthwhile with it, since there's crackles every other token
p_len_train: float = 0.05 # odds of injecting a "len" task within the model for NAR-len
# to-to: just incorporate this as a task instead
# I really need to clean this up
@dataclass()

View File

@ -26,73 +26,6 @@ def clamp(n, lo, hi):
return max(lo, min(n, hi))
class AR_NAR(Base):
@property
def capabilities(self) -> list[str]:
if hasattr(self, "config") and self.config:
return self.config.capabilities
return cfg.model.capabilities
@property
def causal(self):
return "ar" in self.capabilities
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.max_levels
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tasks
return cfg.model.tasks
@property
def n_langs(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.langs
return cfg.model.langs
@property
def n_tones(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tones
return cfg.model.tones
@property
def causal_size(self) -> int:
# 1 for the stop token
# governs how much to shift the logits by
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
if hasattr(self, "config") and self.config:
return self.config.experimental.causal_size
return cfg.model.experimental.causal_size
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
@ -299,7 +232,7 @@ class AR_NAR(Base):
# get next in sequence
for n in trange(max_steps // max(1, self.causal_size), desc="AR", disable=disable_tqdm):
resps_list = self._unsqueeze_list(sequence_list)
resps_list = [x.unsqueeze(dim=-1) for x in sequence_list]
inputs = self.inputs(
text_list=text_list,

View File

@ -30,7 +30,7 @@ except Exception as e:
pass
try:
from .llama import LlamaModel, LlamaConfig, AVAILABLE_ATTENTIONS, LlamaAttention, LlamaAttention_Base, LlamaForCausalLM
from .llama import LlamaModel, LlamaConfig, AVAILABLE_ATTENTIONS, LlamaAttention, LlamaAttention_Adapted, LlamaForCausalLM
AVAILABLE_ARCHES.append("llama")
except Exception as e:
ERROR_ARCHES["llama"] = e
@ -61,11 +61,4 @@ try:
from .mamba_vasqu import Mamba2Model_HF, Mamba2Config_HF
AVAILABLE_ARCHES.append("mamba2-hf")
except Exception as e:
ERROR_ARCHES["mamba2-hf"] = e
# desu should remove, perf was very lacking in comparison to regular bitnet
try:
from .mmfreelm import *
AVAILABLE_ARCHES.append("mmfreelm")
except Exception as e:
ERROR_ARCHES["mmfreelm"] = e
ERROR_ARCHES["mamba2-hf"] = e

View File

@ -7,9 +7,18 @@ from torch import Tensor, nn
from transformers.cache_utils import Cache
from transformers import LlamaModel, LlamaConfig, LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaAttention as LlamaAttention_Base, apply_rotary_pos_emb
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
AVAILABLE_ATTENTIONS = ["mem_efficient", "math"]
AVAILABLE_ATTENTIONS = ["sdpa"]
if torch.backends.cuda.flash_sdp_enabled():
AVAILABLE_ATTENTIONS.append("flash")
if torch.backends.cuda.mem_efficient_sdp_enabled():
AVAILABLE_ATTENTIONS.append("mem_efficient")
if torch.backends.cuda.math_sdp_enabled():
AVAILABLE_ATTENTIONS.append("math")
try:
from xformers.ops import LowerTriangularMask
@ -23,11 +32,11 @@ try:
from transformers.utils import is_flash_attn_2_available
if is_flash_attn_2_available():
AVAILABLE_ATTENTIONS.append("flash")
AVAILABLE_ATTENTIONS.append("flash_attention_2")
except Exception as e:
print("Error while querying for `flash_attn_2` support", e)
class LlamaAttention(LlamaAttention_Base):
class LlamaAttention_Adapted(LlamaAttention):
def __init__(self, *args, **kwargs):
if 'mode' in kwargs:
self.mode = kwargs['mode']
@ -35,8 +44,101 @@ class LlamaAttention(LlamaAttention_Base):
else:
self.mode = "math"
if self.mode == "math":
self.mode = torch.nn.attention.SDPBackend.MATH
elif self.mode == "mem_efficient":
self.mode = torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION
elif self.mode == "flash":
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
elif self.mode == "cudnn":
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
super().__init__(*args, **kwargs)
# Adapted from LlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
#with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
with torch.nn.attention.sdpa_kernel(self.mode):
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
"""
def forward(
self,
hidden_states: torch.Tensor,
@ -88,4 +190,5 @@ class LlamaAttention(LlamaAttention_Base):
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
return attn_output, attn_weights, past_key_value
"""

View File

@ -1,6 +0,0 @@
# https://github.com/ridgerchu/matmulfreellm
import torch
import torch.nn.functional as F
from mmfreelm.models import HGRNBitConfig, HGRNBitModel

View File

@ -297,60 +297,22 @@ class Metrics(nn.Module):
)
class Base(nn.Module):
# to-do: clean up this property mess
@property
def causal(self) -> bool:
raise NotImplementedError
@property
def n_resp_levels(self) -> int:
raise NotImplementedError
@property
def n_max_levels(self) -> int:
raise NotImplementedError
@property
def n_langs(self) -> int:
raise NotImplementedError
@property
def n_tasks(self) -> int:
raise NotImplementedError
@property
def n_tones(self) -> int:
raise NotImplementedError
@property
def causal_size(self) -> int:
raise NotImplementedError
@property
def version(self) -> int:
return 2
@property
def capabilities(self) -> list[str]:
raise NotImplementedError
@property
def stop_token(self):
if "len" in self.capabilities:
return 0
if not self.causal:
raise ValueError("Not using stop token!")
return self.n_audio_tokens
@property
def ignore_index(self):
return -100
def loss_factor(self, k):
if self.config is None:
return 1.0
return self.config.loss_factors[k] if k in self.config.loss_factors else 1.0
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
# these probably need to live in an interleaved model, as pattern-ing is targeted for a sole AR model
"""
def codes_to_pattern(self, codes):
@ -404,7 +366,6 @@ class Base(nn.Module):
super().__init__()
self.training = training
self.config = config
self.gradient_checkpointing = self.config.gradient_checkpointing if self.config is not None else True
self.n_text_tokens = n_text_tokens
self.n_audio_tokens = n_audio_tokens
@ -416,19 +377,35 @@ class Base(nn.Module):
self.l_padding = l_padding
arch_type = self.config.arch_type if self.config is not None else "llama"
self.ignore_index = -100
self.arch_type = arch_type
self.n_resp_levels = self.config.resp_levels if self.config else n_resp_levels
self.n_max_levels = self.config.max_levels if self.config else n_resp_levels
self.capabilities = self.config.capabilities if self.config else ["ar", "nar"]
self.gradient_checkpointing = self.config.gradient_checkpointing if self.config is not None else True
self.stop_token = self.n_audio_tokens # id 1024
self.causal = "ar" in self.capabilities or "len" in self.capabilities
self.version = self.config.version if self.config is not None else 5
self.causal_size = self.config.experimental.causal_size if self.config is not None else (1 if "ar" in self.capabilities else 0)
self.arch_type = self.config.arch_type if self.config is not None else "llama"
# check if requested arch is unavailable
if self.arch_type in ERROR_ARCHES:
raise ERROR_ARCHES[self.arch_type]
attention_backend = self.config.attention if self.config is not None else "auto"
audio_embedding_sums = self.config.experimental.audio_embedding_sums if self.config is not None else False
split_classifiers = self.config.experimental.split_classifiers if self.config is not None else False
tie_classifier_to_embedding = self.config.experimental.tie_classifier_to_embedding if self.config is not None else False
audio_embedding_mode = self.config.experimental.audio_embedding_mode if self.config is not None else ""
unified_position_ids = self.config.experimental.unified_position_ids if self.config is not None else True
n_tasks = self.config.tasks if self.config is not None else 8
n_langs = self.config.langs if self.config is not None else 2
n_tones = self.config.tones if self.config is not None else 1
if "len" not in self.capabilities:
# +1 to include the stop token
n_resp_tokens = n_audio_tokens + ( 1 if self.causal_size > 0 else 0 )
@ -457,7 +434,7 @@ class Base(nn.Module):
self.dropout_token = nn.Parameter(torch.zeros(d_model)) # zeros sounds nicer than randn for a special value
if self.version == 1: # legacy
n_audio_tokens += (self.n_tasks - 1) # old models have the task tokens in the prom
n_audio_tokens += (n_tasks - 1) # old models have the task tokens in the prom
self.proms_emb = MultiEmbedding(self.n_resp_levels, n_audio_tokens, d_model)
self.resps_emb = MultiEmbedding(self.n_resp_levels, n_resp_tokens, d_model, monolithic=self.monolithic)
elif self.version < 5:
@ -485,11 +462,11 @@ class Base(nn.Module):
# useless since I actually removed using these with the input processing overhaul...
if self.version >= 3:
self.langs_emb = Embedding(self.n_langs, d_model) if self.n_langs > 0 else None
self.tasks_emb = Embedding(self.n_tasks, d_model) if self.n_tasks > 0 else None
self.langs_emb = Embedding(n_langs, d_model) if n_langs > 0 else None
self.tasks_emb = Embedding(n_tasks, d_model) if n_tasks > 0 else None
# never actually got added... I kept forgetting to classify all my audio for speaker's tone
if self.version >= 4:
self.tones_emb = Embedding(self.n_tones, d_model) if self.n_tones > 0 else None
self.tones_emb = Embedding(n_tones, d_model) if n_tones > 0 else None
# mamba requires this if a model does both AR and NAR tasks
# this *might* help for AR and NAR tasks since we explicitly specify the current RVQ level for a sequence, rather than having it "encoded" in the embeddings
@ -501,31 +478,28 @@ class Base(nn.Module):
self.len_emb = Embedding(11, d_model) if "len" in self.capabilities else None
# there seems to have been a regression where anything touching the wrapped LlamaAttention class breaks
"""
# ick, there has to be a better way
if self.config.attention == "auto":
if "flash" in AVAILABLE_ATTENTIONS:
self.config.attention = "flash"
elif "xformers" in AVAILABLE_ATTENTIONS:
self.config.attention = "xformers"
if attention_backend == "auto":
if "flash_attention_2" in AVAILABLE_ATTENTIONS:
attention_backend = "flash_attention_2"
elif "flash" in AVAILABLE_ATTENTIONS:
attention_backend = "flash"
elif "mem_efficient" in AVAILABLE_ATTENTIONS:
attention_backend = "mem_efficient"
elif "math" in AVAILABLE_ATTENTIONS:
attention_backend = "math"
else:
self.config.attention = "sdpa"
attention_backend = "sdpa"
hf_attention = self.config.attention if self.config is not None else None
if self.config.attention in ["xformers", "mem_efficient", "math", "flash"]:
hf_attention = None
if self.config.attention not in AVAILABLE_ATTENTIONS:
raise ValueError(f"Requesting attention `{self.config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
"""
if self.config.attention == "auto":
if "flash" in AVAILABLE_ATTENTIONS:
self.config.attention = "flash_attention_2"
else:
self.config.attention = "sdpa"
if attention_backend == "xformers":
attention_backend = "mem_efficient"
hf_attention = self.config.attention if self.config is not None else None
hf_attention = attention_backend
if attention_backend in ["xformers", "mem_efficient", "math", "flash", "cudnn"]:
hf_attention = None
if attention_backend not in AVAILABLE_ATTENTIONS:
raise ValueError(f"Requesting attention `{attention_backend}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
if self.arch_type == "transformer":
self.sin_emb = SinusoidalEmbedding(d_model)
@ -654,18 +628,6 @@ class Base(nn.Module):
))
self.model = RetNetDecoder(RetNetConfig(**kwargs))
# do some funny stuff for LoRA training
"""
if self.gradient_checkpointing:
def make_inputs_require_grads(module, input, output):
for i, t in enumerate(input):
if not isinstance(t, torch.Tensor):
continue
t.requires_grad_(True)
self.model.register_forward_hook(make_inputs_require_grads)
"""
elif self.arch_type == "retnet-hf":
kwargs = dict(
vocab_size=n_resp_tokens,
@ -757,10 +719,8 @@ class Base(nn.Module):
if hasattr( self.model, "embeddings" ):
del self.model.embeddings
"""
if self.config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]:
self.model = ml.replace_attention( self.model, klass=LlamaAttention, target=LlamaAttention_Base, mode=self.config.attention )
"""
if attention_backend in ["mem_efficient", "math", "flash", "cudnn", "auto"]:
self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend )
if not split_classifiers:
self.classifier = nn.Linear(d_model, n_resp_tokens)

View File

@ -21,71 +21,6 @@ from tqdm import trange
from ..emb.qnt import trim
class NAR(Base):
@property
def capabilities(self) -> list[str]:
if hasattr(self, "config") and self.config:
return self.config.capabilities
return cfg.model.capabilities
@property
def causal(self):
return "len" in self.capabilities
@property
def n_resp_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.resp_levels
return cfg.model.resp_levels
@property
def n_max_levels(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.max_levels
return cfg.model.max_levels
@property
def n_tasks(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tasks
return cfg.model.tasks
@property
def n_langs(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.langs
return cfg.model.langs
@property
def n_tones(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.tones
return cfg.model.tones
@property
def causal_size(self) -> int:
# 1 for the stop token
# governs how much to shift the logits by
# could *technically* make it work to where it can also predict *ALL* RVQ levels in one step, but experimental.py is the better way to go about it
return 1 # if self.causal else 0
@property
def version(self) -> int:
if hasattr(self, "config") and self.config:
return self.config.version
return cfg.model.version
def _prune(self, l: Tensor, stop = None):
if stop is None:
stop = self.stop_token
indices = (l == stop).nonzero()
if len(indices) == 0:
return l
return l[: indices.min().item()]
@staticmethod
def _unsqueeze_list(x_list, axis=-1):
return [x.unsqueeze(dim=axis) for x in x_list]
def forward(
self,
text_list: list[Tensor],
@ -121,7 +56,7 @@ class NAR(Base):
# is training
if resps_list is not None:
p_len_task = 0.25
p_len_task = self.config.experimental.p_len_train if self.config is not None else 0.05
n_levels_set = {r.shape[-1] for r in resps_list}
n_levels = next(iter(n_levels_set))