Init
This commit is contained in:
parent
e24ac210a0
commit
154ddf264c
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
__pycache__
|
||||
/data
|
||||
/logs
|
||||
/ckpts
|
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
[submodule "mini_vall_e/utils"]
|
||||
path = vall_e/utils
|
||||
url = https://github.com/enhuiz/pytorch-training-utils.git
|
|
@ -1 +1,3 @@
|
|||
# mini-valle
|
||||
# VALL-E
|
||||
|
||||
An unofficial (toy) implementation of VALL-E, based on the [encodec](https://github.com/facebookresearch/encodec) tokenizer.
|
||||
|
|
386
vall_e/ar/model.py
Normal file
386
vall_e/ar/model.py
Normal file
|
@ -0,0 +1,386 @@
|
|||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import Tensor, einsum, nn
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from tqdm import trange
|
||||
|
||||
|
||||
def _create_mask(l, device):
|
||||
"""1 is valid region and 0 is invalid."""
|
||||
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
|
||||
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
|
||||
return (seq < stop).float() # (b t)
|
||||
|
||||
|
||||
def _list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
|
||||
"""
|
||||
Args:
|
||||
x_list: [(t d)]
|
||||
Returns:
|
||||
x: (? ? ?)
|
||||
m: (? ? ?), same as x
|
||||
"""
|
||||
l = list(map(len, x_list))
|
||||
x = rearrange(pad_sequence(x_list), pattern)
|
||||
m = _create_mask(l, x_list[0].device)
|
||||
m = m.t().unsqueeze(-1) # (t b 1)
|
||||
m = rearrange(m, pattern)
|
||||
return x, m
|
||||
|
||||
|
||||
class SinusodialEmbedding(nn.Module):
|
||||
def __init__(self, d_model):
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
exponent = torch.arange(self.d_half, dtype=torch.float32)
|
||||
exponent = exponent / self.d_half
|
||||
omega = torch.exp(-math.log(1e4) * exponent)
|
||||
self.omega: torch.Tensor
|
||||
self.register_buffer("omega", omega, persistent=False)
|
||||
|
||||
@property
|
||||
def d_half(self):
|
||||
assert self.d_model % 2 == 0, "Only support even d_model."
|
||||
return self.d_model // 2
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: (...)
|
||||
Returns:
|
||||
pe: (... d)
|
||||
"""
|
||||
omega = self.omega
|
||||
while omega.dim() <= x.dim():
|
||||
omega = omega.unsqueeze(0) # (... d)
|
||||
|
||||
x = x.unsqueeze(-1) # (... 1)
|
||||
x = omega * x
|
||||
x = torch.cat([x.sin(), x.cos()], dim=-1)
|
||||
|
||||
return x
|
||||
|
||||
def get_pe(self, n: int):
|
||||
"""
|
||||
Args:
|
||||
n: int
|
||||
Returns:
|
||||
pe: (n d)
|
||||
"""
|
||||
device = self.omega.device
|
||||
return self.forward(torch.arange(n, device=device))
|
||||
|
||||
def add_pe(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: (b t c)
|
||||
"""
|
||||
e = self.get_pe(x.shape[1]) # t d
|
||||
e = e[None] # b t d
|
||||
x = x + e
|
||||
return x
|
||||
|
||||
|
||||
class CasualAttention(nn.Module):
|
||||
def __init__(self, d_model, num_heads):
|
||||
super().__init__()
|
||||
assert d_model % num_heads == 0
|
||||
dim_head = d_model // num_heads
|
||||
self.num_heads = num_heads
|
||||
self.scale = dim_head**-0.5
|
||||
self.to_qkv = nn.Linear(d_model, d_model * 3, bias=False)
|
||||
self.to_out = nn.Linear(d_model, d_model)
|
||||
|
||||
def forward(self, x, m):
|
||||
"""
|
||||
Args:
|
||||
x: (b t c)
|
||||
m: (b t c), 1 is data, 0 is padding
|
||||
Returns:
|
||||
x: (b t c)
|
||||
"""
|
||||
h = self.num_heads
|
||||
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
||||
q, k, v = map(lambda t: rearrange(t, "b t (h d) -> b t h d", h=h), (q, k, v))
|
||||
|
||||
e = einsum("b i h d, b j h d -> b i j h", q, k)
|
||||
e = e * self.scale
|
||||
|
||||
kpm = m.unsqueeze(1) * m.unsqueeze(2) # b i j 1
|
||||
kpm = kpm.squeeze(-1).tril().unsqueeze(-1) # b i j 1
|
||||
|
||||
e = e.masked_fill(kpm == 0, -torch.finfo(e.dtype).max)
|
||||
a = e.softmax(dim=2) # Normalize on j, i.e. key
|
||||
|
||||
o = einsum("b i j h, b j h d -> b i h d", a, v)
|
||||
o = o.flatten(-2)
|
||||
o = self.to_out(o) # b t c
|
||||
|
||||
o = o * m
|
||||
|
||||
return o
|
||||
|
||||
|
||||
class PrenormResidual(nn.Module):
|
||||
def __init__(self, block, d_model, dropout, requires_mask=False):
|
||||
super().__init__()
|
||||
self.block = block
|
||||
self.requires_mask = requires_mask
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x, m):
|
||||
opts = {"m": m} if self.requires_mask else {}
|
||||
x = x + self.dropout(self.block(self.norm(x) * m, **opts))
|
||||
return x * m
|
||||
|
||||
|
||||
class Block(nn.Sequential):
|
||||
def __init__(self, d_model, num_heads, dropout):
|
||||
super().__init__()
|
||||
self.attn = PrenormResidual(
|
||||
CasualAttention(d_model, num_heads),
|
||||
d_model=d_model,
|
||||
dropout=dropout,
|
||||
requires_mask=True,
|
||||
)
|
||||
self.ffn = PrenormResidual(
|
||||
nn.Sequential(
|
||||
nn.Linear(d_model, d_model * 4),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(d_model * 4, d_model),
|
||||
),
|
||||
d_model=d_model,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
def forward(self, x, m):
|
||||
"""
|
||||
Args:
|
||||
x: (b t c)
|
||||
m: (b t 1)
|
||||
"""
|
||||
x = self.attn(x, m)
|
||||
x = self.ffn(x, m)
|
||||
return x
|
||||
|
||||
|
||||
class EmbeddingWithPE(nn.Module):
|
||||
def __init__(self, num_tokens, token_dim):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_tokens, token_dim)
|
||||
self.sin_emb = SinusodialEmbedding(token_dim)
|
||||
|
||||
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
|
||||
if len(x_list) == 0:
|
||||
return []
|
||||
|
||||
x = pad_sequence(x_list, batch_first=True) # b t
|
||||
x = self.embedding(x) # b t d
|
||||
x = self.sin_emb.add_pe(x)
|
||||
x_list = [xi[:li] for xi, li in zip(x, map(len, x_list))]
|
||||
|
||||
return x_list
|
||||
|
||||
|
||||
def _join(x: tuple[Tensor], sep: Tensor):
|
||||
"""
|
||||
Args:
|
||||
x: (k t d)
|
||||
sep: (d)
|
||||
"""
|
||||
ret = x[0]
|
||||
for i in range(1, len(x)):
|
||||
ret = torch.cat((ret, sep[None], x[i]), dim=0)
|
||||
return ret
|
||||
|
||||
|
||||
class VALLEAR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_tokens: int,
|
||||
d_model=256,
|
||||
num_heads=8,
|
||||
dropout=0.1,
|
||||
num_layers=12,
|
||||
):
|
||||
super().__init__()
|
||||
# Here, simply use num_tokens := max(num_text_tokens, num_prompt_tokens, num_output_tokens)
|
||||
self.text_emb = EmbeddingWithPE(num_tokens, d_model)
|
||||
self.prompt_emb = EmbeddingWithPE(num_tokens, d_model)
|
||||
self.output_emb = EmbeddingWithPE(num_tokens, d_model)
|
||||
self.sep = nn.Parameter(torch.randn(d_model)) # start of sequence token
|
||||
self.blocks = nn.ModuleList(
|
||||
[Block(d_model, num_heads, dropout) for _ in range(num_layers)]
|
||||
)
|
||||
self.fc = nn.Linear(d_model, num_tokens)
|
||||
|
||||
@property
|
||||
def _ignore_index(self):
|
||||
return -100
|
||||
|
||||
@staticmethod
|
||||
def _elementwise_merge_tensors(*l, sep):
|
||||
return [*map(lambda ts: _join(ts, sep), zip(*l))]
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
prompt_list: list[Tensor],
|
||||
output_list: list[Tensor],
|
||||
compute_loss: bool = True,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
text_list: b t d
|
||||
prompt_list: b t d
|
||||
output_list: b t d
|
||||
Returns:
|
||||
y: logits of last output, b k
|
||||
"""
|
||||
device = text_list[0].device
|
||||
|
||||
x_list = self._elementwise_merge_tensors(
|
||||
self.text_emb(text_list),
|
||||
self.prompt_emb(prompt_list),
|
||||
self.output_emb(output_list),
|
||||
sep=self.sep,
|
||||
)
|
||||
|
||||
x, m = _list_to_tensor(x_list)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, m)
|
||||
|
||||
h = self.fc(x) * m
|
||||
|
||||
h_list = [hi[:li] for hi, li in zip(h, map(len, x_list))]
|
||||
|
||||
if compute_loss and len(output_list) > 0:
|
||||
y_list = self._elementwise_merge_tensors(
|
||||
text_list,
|
||||
prompt_list,
|
||||
output_list,
|
||||
sep=torch.tensor(self._ignore_index, device=device),
|
||||
)
|
||||
|
||||
# make y_list earlier as it is future that is unknown
|
||||
for i in range(len(y_list)):
|
||||
y_list[i] = y_list[i].roll(-1, dims=0)
|
||||
y_list[i][-1] = self._ignore_index
|
||||
|
||||
self.loss = dict(
|
||||
nll=F.cross_entropy(
|
||||
torch.cat(h_list),
|
||||
torch.cat(y_list),
|
||||
ignore_index=self._ignore_index,
|
||||
)
|
||||
)
|
||||
|
||||
logits = torch.stack([hi[-1] for hi in h_list])
|
||||
|
||||
return logits
|
||||
|
||||
@staticmethod
|
||||
def _prune(l: list[int], stop_token: int | None):
|
||||
if stop_token is None:
|
||||
return l
|
||||
n = next((i for i, x in enumerate(l) if x == stop_token), None)
|
||||
if n is not None:
|
||||
l = l[:n]
|
||||
return l
|
||||
|
||||
def generate(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
prompt_list: list[Tensor],
|
||||
max_steps: int = 1000,
|
||||
stop_token: int | None = None,
|
||||
):
|
||||
device = text_list[0].device
|
||||
output_list: list[Tensor] = [
|
||||
torch.zeros(0, device=device).long() for _ in text_list
|
||||
]
|
||||
stopped = [False] * len(text_list)
|
||||
for _ in trange(max_steps):
|
||||
logits = self.forward(
|
||||
text_list,
|
||||
prompt_list,
|
||||
output_list,
|
||||
compute_loss=False,
|
||||
)
|
||||
o = Categorical(logits=logits).sample()
|
||||
for i, oi in enumerate(o):
|
||||
if oi.item() == stop_token:
|
||||
stopped[i] = True
|
||||
output_list[i] = torch.cat([output_list[i], oi[None]])
|
||||
if all(stopped):
|
||||
break
|
||||
pruned = [self._prune(o.tolist(), stop_token) for o in output_list]
|
||||
return pruned
|
||||
|
||||
|
||||
def example_usage():
|
||||
device = "cuda"
|
||||
|
||||
test_qnt = torch.load("data/test/test.qnt.pt")[0, 0].to(device)
|
||||
num_qnts = 1024 + 1
|
||||
eoq = num_qnts - 1
|
||||
|
||||
model = VALLEAR(num_qnts).to(device)
|
||||
|
||||
text_list = [
|
||||
torch.tensor([1, 2, 3], device=device),
|
||||
torch.tensor([2, 3], device=device),
|
||||
]
|
||||
|
||||
prompt_list = [
|
||||
torch.tensor([1, 2, 3], device=device),
|
||||
torch.tensor([2, 3], device=device),
|
||||
]
|
||||
|
||||
output_list = [
|
||||
torch.tensor([1, 2, 3, eoq], device=device),
|
||||
torch.tensor([*test_qnt, eoq], device=device),
|
||||
]
|
||||
|
||||
out = model.generate(
|
||||
text_list,
|
||||
prompt_list,
|
||||
max_steps=200,
|
||||
stop_token=eoq,
|
||||
)
|
||||
|
||||
print(test_qnt)
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
||||
|
||||
for i in range(100):
|
||||
optimizer.zero_grad()
|
||||
_ = model(text_list, prompt_list, output_list)
|
||||
|
||||
losses = model.loss
|
||||
sum(losses.values()).backward()
|
||||
optimizer.step()
|
||||
|
||||
if i % 20 == 0:
|
||||
print(f"iter={i}, {losses}.")
|
||||
|
||||
out = model.generate(
|
||||
text_list,
|
||||
prompt_list,
|
||||
max_steps=200,
|
||||
stop_token=eoq,
|
||||
)
|
||||
|
||||
print(out)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
example_usage()
|
59
vall_e/emb/qnt.py
Normal file
59
vall_e/emb/qnt.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
import argparse
|
||||
from functools import cache
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from encodec import EncodecModel
|
||||
from encodec.utils import convert_audio
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
@cache
|
||||
def _load_model(device="cuda"):
|
||||
# Instantiate a pretrained EnCodec model
|
||||
model = EncodecModel.encodec_model_24khz()
|
||||
model.set_target_bandwidth(6.0)
|
||||
model.to(device)
|
||||
return model
|
||||
|
||||
|
||||
def replace_file_extension(path, suffix):
|
||||
return (path.parent / path.name.split(".")[0]).with_suffix(suffix)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def encode(wav, sr, device="cuda"):
|
||||
"""
|
||||
Args:
|
||||
wav: (t)
|
||||
sr: int
|
||||
"""
|
||||
model = _load_model(device)
|
||||
wav = wav.unsqueeze(0)
|
||||
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
||||
wav = wav.to(device)
|
||||
encoded_frames = model.encode(wav)
|
||||
qnt = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1) # (b k t)
|
||||
return qnt
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("folder", type=Path)
|
||||
parser.add_argument("--suffix", default=".wav")
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = [*args.folder.rglob(f"*{args.suffix}")]
|
||||
|
||||
for path in tqdm(paths):
|
||||
out_path = replace_file_extension(path, ".qnt.pt")
|
||||
wav, sr = torchaudio.load(path)
|
||||
if wav.shape[0] == 2:
|
||||
wav = wav[:1]
|
||||
qnt = encode(wav, sr)
|
||||
torch.save(qnt.cpu(), out_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
vall_e/utils
Submodule
1
vall_e/utils
Submodule
|
@ -0,0 +1 @@
|
|||
Subproject commit 0dbc980be3a4cb26ad5e3b16643a70a47623358a
|
Loading…
Reference in New Issue
Block a user