overhauled inference/sampler kwargs to stop being a bloated mess

This commit is contained in:
mrq 2024-11-11 20:21:16 -06:00
parent 354f8e059d
commit 2f56696506
9 changed files with 431 additions and 638 deletions

View File

@ -20,20 +20,23 @@ def main():
parser.add_argument("--model", type=Path, default=None)
parser.add_argument("--lora", type=Path, default=None)
parser.add_argument("--max-ar-steps", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-nar-levels", type=int, default=7)
parser.add_argument("--max-duration", type=int, default=12 * cfg.dataset.frames_per_second)
parser.add_argument("--max-steps", type=int, default=25)
parser.add_argument("--max-levels", type=int, default=7)
parser.add_argument("--ar-temp", type=float, default=0.5)
parser.add_argument("--nar-temp", type=float, default=0.0)
parser.add_argument("--min-ar-temp", type=float, default=-1.0)
parser.add_argument("--min-nar-temp", type=float, default=-1.0)
parser.add_argument("--ar-temperature", type=float, default=1.0)
parser.add_argument("--nar-temperature", type=float, default=0.0)
parser.add_argument("--min-ar-temperature", type=float, default=-1.0)
parser.add_argument("--min-nar-temperature", type=float, default=-1.0)
parser.add_argument("--input-prompt-length", type=float, default=3.0)
parser.add_argument("--input-prompt-prefix", action="store_true")
parser.add_argument("--prefix-silence", type=float, default=0.0)
parser.add_argument("--cfg-strength", type=float, default=0.0)
parser.add_argument("--top-p", type=float, default=1.0)
parser.add_argument("--top-k", type=int, default=0)
parser.add_argument("--min-p", type=float, default=0.0)
parser.add_argument("--repetition-penalty", type=float, default=1.5)
parser.add_argument("--repetition-penalty", type=float, default=1.0)
parser.add_argument("--repetition-penalty-decay", type=float, default=0.0)
parser.add_argument("--length-penalty", type=float, default=0.0)
parser.add_argument("--beam-width", type=int, default=0)
@ -73,17 +76,13 @@ def main():
config = args.model
tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype, amp=args.amp, attention=args.attention )
output = tts.inference(
text=args.text,
references=args.references,
language=args.language,
task=args.task,
out_path=args.out_path,
input_prompt_length=args.input_prompt_length,
input_prompt_prefix=args.input_prompt_prefix,
max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels,
ar_temp=args.ar_temp, nar_temp=args.nar_temp,
min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp,
sampling_kwargs = dict(
max_steps=args.max_steps,
max_levels=args.max_levels,
max_duration=args.max_duration,
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
@ -96,9 +95,23 @@ def main():
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
refine_on_stop=args.refine_on_stop,
load_from_artifact=args.load_from_artifact,
denoise_start=args.denoise_start,
input_prompt_prefix=args.input_prompt_prefix,
prefix_silence=args.prefix_silence,
cfg_strength=args.cfg_strength,
)
output = tts.inference(
text=args.text,
references=args.references,
language=args.language,
task=args.task,
out_path=args.out_path,
input_prompt_length=args.input_prompt_length,
load_from_artifact=args.load_from_artifact,
sampling_kwargs=sampling_kwargs,
seed=args.seed,
)

View File

@ -292,6 +292,7 @@ class Model:
#loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 1.0, "resp": 1.0 }) # disable it by default since it causes a little more harm than good
loss_factors: dict = field(default_factory=lambda: {})
capabilities: list = field(default_factory=lambda: ["ar", "nar"]) # + ["lang", "tone"] if you have your dataset labeled for such
kwargs: dict = field(default_factory=lambda: {})
experimental: dict | ModelExperimentalSettings | None = None # experimental settings
@ -410,6 +411,11 @@ class Model:
return dict(include=include, exclude=exclude)
# to-do: derive default arguments from here
@property
def get_kwargs(self, type):
return self.kwargs
# should be renamed to Adapters
@dataclass()
class LoRA:
@ -466,32 +472,30 @@ class Evaluation:
# necessary in order to make it not confusing with requiring not-directyl exposed arguments passed to the model
@cached_property
def ar_kwargs( self ):
kwargs = {} | self.kwargs
return dict(
max_steps=kwargs.pop("max_ar_steps", 500),
sampling_temperature=kwargs.pop("ar_temp", 0.5),
sampling_min_temperature=kwargs.pop("min_ar_temp", -1),
sampling_top_p=kwargs.pop("top_p", 1.0), sampling_top_k=kwargs.pop("top_k", 0), sampling_min_p=kwargs.pop("min_p", 0.0),
sampling_repetition_penalty=kwargs.pop("repetition_penalty", 1.125), sampling_repetition_penalty_decay=kwargs.pop("repetition_penalty_decay", 0),
sampling_length_penalty=kwargs.pop("length_penalty", 0),
sampling_beam_width=kwargs.pop("beam_width", 0),
sampling_mirostat_tau=kwargs.pop("mirostat_tau", 0),
sampling_mirostat_eta=kwargs.pop("mirostat_eta", 0),
sampling_dry_multiplier=kwargs.pop("dry_multiplier", 0),
sampling_dry_base=kwargs.pop("dry_base", 0),
sampling_dry_allowed_length=kwargs.pop("dry_allowed_length", 0),
sampling_entropix=kwargs.pop("entropix_sampling", False),
max_steps=self.kwargs.get("max_ar_steps", 500),
temperature=self.kwargs.get("ar_temperature", 1.0),
min_temperature=self.kwargs.get("min_ar_temperature", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0),
length_penalty=self.kwargs.get("length_penalty", 0),
beam_width=self.kwargs.get("beam_width", 0),
mirostat_tau=self.kwargs.get("mirostat_tau", 0),
mirostat_eta=self.kwargs.get("mirostat_eta", 0),
dry_multiplier=self.kwargs.get("dry_multiplier", 0),
dry_base=self.kwargs.get("dry_base", 0),
dry_allowed_length=self.kwargs.get("dry_allowed_length", 0),
entropix=self.kwargs.get("entropix_sampling", False),
)
@cached_property
def nar_kwargs( self ):
kwargs = {} | self.kwargs
return dict(
max_levels=kwargs.pop("max_nar_levels", 0),
sampling_temperature=kwargs.pop("nar_temp", 0.0),
sampling_min_temperature=kwargs.pop("min_nar_temp", -1),
sampling_top_p=kwargs.pop("top_p", 1.0), sampling_top_k=kwargs.pop("top_k", 0.0), sampling_min_p=kwargs.pop("min_p", 0.0),
sampling_repetition_penalty=kwargs.pop("repetition_penalty", 1.0), sampling_repetition_penalty_decay=kwargs.pop("repetition_penalty_decay", 0.0),
max_levels=self.kwargs.get("max_nar_levels", 0),
temperature=self.kwargs.get("nar_temperature", 0.0),
min_temperature=self.kwargs.get("min_nar_temp", -1),
top_p=self.kwargs.get("top_p", 1.0), top_k=self.kwargs.get("top_k", 0.0), min_p=self.kwargs.get("min_p", 0.0),
repetition_penalty=self.kwargs.get("repetition_penalty", 1.0), repetition_penalty_decay=self.kwargs.get("repetition_penalty_decay", 0.0),
)
@dataclass()

View File

@ -571,7 +571,7 @@ def _load_paths_from_metadata(group_name, type="training", validate=False):
_fn = _get_hdf5_paths if cfg.dataset.use_hdf5 else _get_paths_of_extensions
def key( id, entry=None ):
return f"/{type}/{_get_hdf5_path(data_dir)}/{id}" if cfg.dataset.use_hdf5 else data_dir / id
return f"/{type}/{_get_hdf5_path(data_dir)}/{id}" if cfg.dataset.use_hdf5 else str(data_dir / id)
metadata_path = cfg.metadata_dir / f'{group_name}.json'
metadata = {}
@ -628,21 +628,8 @@ def _get_hdf5_paths( data_dir, type="training", validate=False ):
def _get_paths_of_extensions( path, extensions=_get_quant_extension(), validate=False ):
if isinstance(path, str):
path = Path(path)
def _validate(path):
if "".join(path.suffixes) not in extensions:
return False
if not _get_phone_path(path).exists() or not _get_quant_path(path).exists():
return False
if not validate:
return True
# to-do: find an easy way to determine size from pickled quants without loading
# to-do: find a consistent way to derive phoneme count from filesize (probably can't due to utf-8)
phones = len(_get_phones(_get_phone_path(path))) # _get_phone_path(path).stat().st_size // 2 + 1
return cfg.dataset.min_phones <= phones and phones <= cfg.dataset.max_phones
return [ p for p in list(path.iterdir()) if _validate(p) ] if path.exists() and path.is_dir() else []
return [ p for p in list(path.iterdir()) ] if path.exists() and path.is_dir() else []
def _load_quants(path, return_metadata=False) -> Tensor:
qnt = np.load(_get_quant_path(path), allow_pickle=True)[()]

View File

@ -186,55 +186,15 @@ class TTS():
references,
language="en",
task="tts",
#
max_ar_steps=6 * cfg.dataset.frames_per_second,
max_nar_levels=7,
#
input_prompt_length=0.0,
input_prompt_prefix=False,
prefix_silence=0.0,
#
ar_temp=0.0,
nar_temp=0.0,
#
min_ar_temp=0.0,
min_nar_temp=0.0,
#
top_p=1.0,
top_k=0,
min_p=0.0,
#
repetition_penalty=1.0,
repetition_penalty_decay=0.0,
length_penalty=0.0,
#
beam_width=0,
#
mirostat_tau=0,
mirostat_eta=0.1,
#
dry_multiplier=0.0,
dry_base=1.75,
dry_allowed_length=2,
#
entropix_sampling=False,
#
layer_skip=False,
layer_skip_exit_layer=-1,
layer_skip_entropy_threshold=-1,
layer_skip_varentropy_threshold=-1,
#
refine_on_stop=False,
#
input_prompt_length = 0,
load_from_artifact = False,
seed = None,
#
load_from_artifact = None,
denoise_start = 0.0,
out_path=None,
tqdm=True,
use_lora=None,
**sampling_kwargs,
):
lines = text.split("\n")
@ -265,25 +225,10 @@ class TTS():
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
if model_ar is not None:
text_list = model_ar(
text_list=None, proms_list=[resp], lang_list=[lang], resps_list=[resp], max_steps=max_ar_steps, task_list=["stt"],
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
sampling_dry_multiplier=dry_multiplier,
sampling_dry_base=dry_base,
sampling_dry_allowed_length=dry_allowed_length,
sampling_entropix=entropix_sampling,
sampling_layer_skip=layer_skip,
sampling_layer_skip_exit_layer=layer_skip_exit_layer,
sampling_refine_on_stop=refine_on_stop,
text_list=None, proms_list=[resp], lang_list=[lang], resps_list=[resp], task_list=["stt"],
disable_tqdm=not tqdm,
use_lora=use_lora,
**sampling_kwargs,
)
else:
raise Exception("!")
@ -292,10 +237,6 @@ class TTS():
return text_list[0]
# validate settings here
if not references and ar_temp < 0.5:
_logger.warning(f'Audio-promptless inferencing fails with low AR temperatures.')
for line in lines:
if out_path is None:
output_dir = Path("./data/results/")
@ -315,52 +256,21 @@ class TTS():
with torch.autocast("cuda", dtype=self.dtype, enabled=self.amp):
if model_ar is not None:
resps_list = model_ar(
text_list=[phns], proms_list=[prom], lang_list=[lang], max_steps=max_ar_steps, task_list=["tts"],
input_prompt_prefix=input_prompt_prefix,
prefix_silence=prefix_silence,
sampling_temperature=ar_temp,
sampling_min_temperature=min_ar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_length_penalty=length_penalty,
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
sampling_dry_multiplier=dry_multiplier,
sampling_dry_base=dry_base,
sampling_dry_allowed_length=dry_allowed_length,
sampling_entropix=entropix_sampling,
sampling_layer_skip=layer_skip,
sampling_layer_skip_exit_layer=layer_skip_exit_layer,
sampling_layer_skip_entropy_threshold=layer_skip_entropy_threshold,
sampling_layer_skip_varentropy_threshold=layer_skip_varentropy_threshold,
sampling_refine_on_stop=refine_on_stop,
text_list=[phns], proms_list=[prom], lang_list=[lang], task_list=["tts"],
disable_tqdm=not tqdm,
use_lora=use_lora,
**sampling_kwargs,
)
resps_list = model_nar(
text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list, task_list=["tts"],
input_prompt_prefix=input_prompt_prefix,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
sampling_layer_skip=layer_skip,
sampling_layer_skip_exit_layer=layer_skip_exit_layer,
sampling_layer_skip_entropy_threshold=layer_skip_entropy_threshold,
sampling_layer_skip_varentropy_threshold=layer_skip_varentropy_threshold,
disable_tqdm=not tqdm,
use_lora=use_lora,
**sampling_kwargs,
)
elif model_len is not None:
len_list = model_len( text_list=[phns], proms_list=[prom], task_list=["len"], max_steps=5, disable_tqdm=not tqdm ) # don't need more than that
len_list = [ clamp(l, 1, max_ar_steps) for l in len_list ]
len_list = model_len( text_list=[phns], proms_list=[prom], task_list=["len"], disable_tqdm=not tqdm, **{"max_steps": 5} ) # don't need more than that
kwargs = {}
# nasty hardcode to load a reference file and have that as the input target
if load_from_artifact and load_from_artifact.exists():
artifact = np.load(load_from_artifact, allow_pickle=True)[()]
@ -373,17 +283,9 @@ class TTS():
kwargs["resps_list"] = [ resp[:, :1] ]
resps_list = model_nar( text_list=[phns], proms_list=[prom], len_list=len_list, task_list=["tts"],
max_steps=max_ar_steps,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k, sampling_min_p=min_p,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
denoise_start=denoise_start,
disable_tqdm=not tqdm,
use_lora=use_lora,
**kwargs,
**(sampling_kwargs | kwargs),
)
else:
raise Exception("!")

View File

@ -17,14 +17,14 @@ import math
import time
from einops import rearrange
from torch import Tensor
from tqdm import trange
from tqdm import trange, tqdm
import logging
_logger = logging.getLogger(__name__)
from ..emb.qnt import trim, encode_as_embedding, get_silence
from ..utils import get_devices, setup_logging, timer, clamp
from ..utils import get_devices, setup_logging, timer, clamp, convert_kwargs
from .lora import enable_lora
@ -187,6 +187,149 @@ class AR_NAR(Base):
quant_levels=quant_levels,
)
def forward_nar_masked(
self,
text_list: list[Tensor],
proms_list: list[Tensor],
resps_list: list[Tensor] | None = None,
task_list: list[Tensor] | None = None,
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
device = text_list[0].device
batch_size = len(text_list)
# special "scheduling" to inference RVQ-level 0
level = 0
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora )
def log(x, eps = 1e-20):
return torch.log(x.clamp(min = eps))
def gumbel_sample(x, temperature = 1., dim = -1):
return ((x / max(temperature, 1e-10)) + -log(-log(torch.zeros_like(x).uniform_(0, 1)))).argmax(dim = dim)
# convert (N)AR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" )
max_length = sampling_kwargs.pop("max_duration", 500)
max_steps = sampling_kwargs.get("max_steps", 25)
temperature = sampling_kwargs.pop("temperature", 1.0)
cfg_strength = sampling_kwargs.get("cfg_strength", 0.0)
start_noise = sampling_kwargs.get("denoise_start", 0.0)
end_noise = sampling_kwargs.get("denoise_end", 1.0)
max_steps = math.floor(max_steps * (end_noise - start_noise))
len_list = [ clamp(l, 1, max_length) for l in len_list ]
# if we're denoising from an existing sequence
if start_noise > 0.0 and resps_list is not None:
noise_p = math.cos( start_noise * math.pi * 0.5 )
mask = [ torch.tensor( [ random.random() < noise_p for _ in range( seq_len ) ], dtype=torch.bool, device=device ) for seq_len in len_list ]
resps_list = [ torch.where( mask, self.stop_token, resps[:, 0] ) for seq_len, resps in zip( len_list, resps_list ) ]
else:
resps_list = [ torch.ones((seq_len,), dtype=torch.int16, device=device) * self.stop_token for seq_len in len_list ]
scores = [ torch.zeros((seq_len,), dtype=torch.float32, device=device) for seq_len in len_list ]
quant_levels = [ level for _ in range(batch_size) ]
null_text = [ torch.tensor([1, 2], device=device, dtype=torch.int16) for _ in range(batch_size) ]
null_prom = [ None for _ in range(batch_size) ]
prev_list = resps_list
for timestep, steps_until_x0 in tqdm(zip(torch.linspace(start_noise, end_noise, max_steps), reversed(range(max_steps))), desc="NAR Masked", disable=disable_tqdm, total=max_steps):
# get noise level, per cosine scheduling
noise_p = math.cos( timestep * math.pi * 0.5 )
# pick the worst scoring tokens to mask off
masked_indices = [ score.topk( max(int( noise_p * seq_len ), 1), dim=-1 ).indices for score, seq_len in zip(scores, len_list) ]
# mask off inputs
resps_list = [ resp.scatter(0, indices, self.stop_token) for resp, indices in zip( resps_list, masked_indices ) ]
# boolean mask
is_masked = [ resps == self.stop_token for resps in resps_list ]
time_list = [ timestep for _ in range(batch_size) ]
# setup inputs
inputs = super().inputs(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
time_list=time_list,
quant_levels=quant_levels,
)
output = super().forward(
inputs=inputs,
quant_levels=quant_levels,
#layer_skip_variables=sampling_layer_skip_variables,
)
logits = output.logits
if cfg_strength > 0:
null_inputs = super().inputs(
text_list=null_text,
proms_list=null_prom,
resps_list=resps_list,
lang_list=lang_list,
tone_list=tone_list,
time_list=time_list,
quant_levels=quant_levels,
)
null_output = super().forward(
inputs=null_inputs,
quant_levels=quant_levels,
#layer_skip_variables=sampling_layer_skip_variables,
)
for seq_len, logit, null_logit in zip(len_list, output.logits, null_output.logits):
logit[-seq_len:] = null_logit[-seq_len:] + ( logit[-seq_len:] - null_logit[-seq_len:] ) * cfg_strength
# sample with sampler settings
filtered_sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=temperature * (steps_until_x0 / max_steps) ,
**sampling_kwargs,
)
# retrieves unfiltered logits
unfiltered_sampled = super().sample(
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=0.0,
**sampling_kwargs,
)
# update previous list of tokens
prev_list = resps_list
# sample with gumbelnoise
# I actually feel like this doesn't matter? it's hard to judge with a partially trained NAR-len model
sampled_ids = [ gumbel_sample( logits, temperature=temperature, dim=-1 ) for logits in filtered_sampled.logits[0] ]
#sampled_ids = filtered_sampled[0]
# keep unmasked tokens
resps_list = [ torch.where( masked, input_ids, resps ) for masked, input_ids, resps in zip( is_masked, sampled_ids, resps_list ) ]
# update scores (conjugated to put the worst scores at the top)
scores = [ 1.0 - torch.tensor([score for score in scores], device=device) for scores in unfiltered_sampled.scores ]
if cfg.experimental and max_steps > 0:
print( timestep, steps_until_x0, noise_p, resps_list, scores )
return resps_list
def forward_nar(
self,
text_list: list[Tensor],
@ -198,40 +341,9 @@ class AR_NAR(Base):
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
training: bool | int | None = None,
max_steps: int = 1000,
max_levels: int = 0,
input_prompt_prefix: bool = False,
prefix_silence: float = 1.0,
denoise_start: float = 0.0,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_min_p: float = 0.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
sampling_dry_multiplier=0.0,
sampling_dry_base=1.75,
sampling_dry_allowed_length=2,
sampling_entropix=False,
sampling_layer_skip: bool = False,
sampling_layer_skip_exit_layer: int = -1,
sampling_layer_skip_entropy_threshold: float = -1,
sampling_layer_skip_varentropy_threshold: float = -1,
sampling_refine_on_stop: bool = False,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
# deduce batch_size
if text_list is not None:
@ -243,9 +355,15 @@ class AR_NAR(Base):
device = resps_list[0].device
batch_size = len(resps_list)
max_levels = sampling_kwargs.get("max_levels", 0)
# convert NAR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "nar_" )
if max_levels == 0:
max_levels = self.n_max_levels - 1
"""
sampling_layer_skip_variables = {} if sampling_layer_skip else None
if sampling_layer_skip:
@ -255,162 +373,20 @@ class AR_NAR(Base):
sampling_layer_skip_variables["varentropy_threshold"] = sampling_layer_skip_varentropy_threshold
if sampling_layer_skip_exit_layer >= 0:
sampling_layer_skip_variables["max_layer"] = sampling_layer_skip_exit_layer
"""
# inference NAR level 0
if len_list is not None:
mask_token = torch.tensor([self.stop_token], dtype=torch.int16, device=device)
prev_list = [ torch.concat([ mask_token for _ in range( resp_len ) ]) for resp_len in len_list ]
# special "scheduling" to inference RVQ-level 0
level = 0
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( level ) if use_lora is None else use_lora )
def log(x, eps = 1e-20):
return torch.log(x.clamp(min = eps))
def gumbel_sample(x, temperature = 1., dim = -1):
return ((x / max(temperature, 1e-10)) + -log(-log(torch.zeros_like(x).uniform_(0, 1)))).argmax(dim = dim)
_super = super()
# to-do: allow for batch processing (it should probably work batched anyways)
def demask_sampling( batch_index, seq_len ):
# overrides, to be user-controllable soonTM
max_steps = 10
temperature = 1.0
cfg_strength = 1.0
sampling_repetition_penalty = 1.0 # force rep pen off, because this caused false positives due to how rep pen was being naively applied......
sampling_top_p = 0.9 # a lot of demasking samplers use a top-k of seq_len * 0.9
start_temperature = temperature
start_noise = 0.0
end_noise = 1.0
# if we're denoising from an existing sequence
if denoise_start > 0.0 and resps_list is not None:
start_noise = denoise_start
noise_p = math.cos( start_noise * math.pi * 0.5 )
mask = torch.tensor( [ random.random() < noise_p for _ in range( seq_len ) ], dtype=torch.bool, device=device )
input_ids = torch.where( mask, self.stop_token, resps_list[batch_index][:, 0] )
else:
input_ids = torch.ones((seq_len,), dtype=torch.int16, device=device) * self.stop_token
scores = torch.zeros((seq_len,), dtype=torch.float32, device=device)
quant_levels = [ level for _ in range(batch_size) ]
prev_list = [ input_ids ]
null_text = torch.tensor([1, 2], device=device, dtype=torch.int16)
null_prom = None
max_steps = math.floor(max_steps * (end_noise - start_noise))
for timestep, steps_until_x0 in zip(torch.linspace(start_noise, end_noise, max_steps), reversed(range(max_steps))):
# anneal temperature
temperature = start_temperature * (steps_until_x0 / max_steps)
# get noise level, per cosine scheduling
noise_p = math.cos( timestep * math.pi * 0.5 )
# number of tokens to mask off to "noise" the input sequence
masked_tokens_n = max(int( noise_p * seq_len ), 1)
# pick the worst scoring tokens to mask off
masked_indices = scores.topk( masked_tokens_n, dim=-1 ).indices
# mask off inputs
input_ids = input_ids.scatter(0, masked_indices, self.stop_token)
# boolean mask
is_masked = input_ids == self.stop_token
# setup inputs
inputs = _super.inputs(
text_list=[ text_list[batch_index] ] if text_list else None,
proms_list=[ proms_list[batch_index] ] if proms_list else None,
resps_list=[ input_ids ],
lang_list=[ lang_list[batch_index] ] if lang_list else None,
tone_list=[ tone_list[batch_index] ] if tone_list else None,
time_list=[ timestep ],
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
)
output = _super.forward(
inputs=inputs,
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
#layer_skip_variables=sampling_layer_skip_variables,
)
logits = output.logits
if cfg_strength > 0:
null_inputs = _super.inputs(
text_list=[ null_text ],
proms_list=[ null_prom ],
resps_list=[ input_ids ],
lang_list=[ lang_list[batch_index] ] if lang_list else None,
tone_list=[ tone_list[batch_index] ] if tone_list else None,
time_list=[ timestep ],
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
)
null_output = _super.forward(
inputs=null_inputs,
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
#layer_skip_variables=sampling_layer_skip_variables,
)
for logit, null_logit in zip(output.logits, null_output.logits):
logit[-seq_len:] = null_logit[-seq_len:] + ( logit[-seq_len:] - null_logit[-seq_len:] ) * cfg_strength
# sample with sampler settings
filtered_sampled = _super.sample(
logits=logits,
prev_list=prev_list,
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
temperature=temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
min_p=sampling_min_p,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
)
# retrieves unfiltered logits
unfiltered_sampled = _super.sample(
logits=logits,
prev_list=prev_list,
quant_levels=[ quant_levels[batch_index] ] if quant_levels else None,
temperature=0.0,
)
# update previous list of tokens
prev_list = [ input_ids ]
# extract logits
filtered_logits = filtered_sampled.logits[0]
unfiltered_logits = unfiltered_sampled.logits[0]
# extract scores
filtered_scores = filtered_sampled.scores[0]
unfiltered_scores = unfiltered_sampled.scores[0]
# extract sampled tokens
filtered_tokens = filtered_sampled[0][0]
unfiltered_tokens = unfiltered_sampled[0][0]
# sample with gumbelnoise
# I actually feel like this doesn't matter? it's hard to judge with a partially trained NAR-len model
sampled_ids = gumbel_sample( filtered_logits, temperature=temperature, dim=-1 )
#sampled_ids = filtered_tokens
# keep unmasked tokens
input_ids = torch.where( is_masked, sampled_ids, input_ids )
# update scores (conjugated to put the worst scores at the top)
scores = 1.0 - torch.tensor([score for score in unfiltered_scores], device=device)
if cfg.experimental and max_steps > 0:
print( timestep, steps_until_x0, noise_p, masked_tokens_n, input_ids, scores )
return input_ids
# perform demasked sampling (mock diffusion)
resps_list = [ demask_sampling( batch_index=i, seq_len=l ) for i, l in enumerate( len_list ) ]
resps_list = self.forward_nar_masked(
text_list=text_list,
proms_list=proms_list,
resps_list=resps_list,
task_list=task_list,
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
**sampling_kwargs,
)
# expand if given a raw 1D tensor
for i, resp in enumerate(resps_list):
@ -449,17 +425,7 @@ class AR_NAR(Base):
logits=logits,
prev_list=prev_list,
quant_levels=quant_levels,
temperature=sampling_temperature,
#min_temperature=sampling_min_temperature,
#top_p=sampling_top_p,
#top_k=sampling_top_k,
#min_p=sampling_min_p,
#repetition_penalty=sampling_repetition_penalty,
#repetition_penalty_decay=sampling_repetition_penalty_decay,
#length_penalty=sampling_length_penalty,
#beam_width=sampling_beam_width,
#mirostat=mirostat,
**sampling_kwargs,
)
resps_list = sampled[0]
@ -478,41 +444,9 @@ class AR_NAR(Base):
lang_list: list[Tensor] | None = None,
tone_list: list[Tensor] | None = None,
len_list: list[Tensor] | None = None,
training: bool | int | None = None,
max_steps: int = 1000,
max_levels: int = 0,
input_prompt_prefix: bool = False,
prefix_silence: float = 1.0,
denoise_start: float = 0.0,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_min_p: float = 0.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
sampling_dry_multiplier=0.0,
sampling_dry_base=1.75,
sampling_dry_allowed_length=2,
sampling_entropix=False,
sampling_layer_skip: bool = False,
sampling_layer_skip_exit_layer: int = -1,
sampling_layer_skip_entropy_threshold: float = -1,
sampling_layer_skip_varentropy_threshold: float = -1,
sampling_refine_on_stop: bool = False,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
# deduce batch_size
if text_list is not None:
@ -527,6 +461,21 @@ class AR_NAR(Base):
if cfg.lora is not None:
enable_lora( self, cfg.lora.active_level( 0 ) if use_lora is None else use_lora )
# convert AR specific args
sampling_kwargs = convert_kwargs( sampling_kwargs, "ar_" )
temperature = sampling_kwargs.get("temperature", 1.0)
min_temperature = sampling_kwargs.get("min_temperature", -1.0)
max_duration = sampling_kwargs.get("max_duration", 500)
beam_width = sampling_kwargs.get("beam_width", 0)
entropix_sampling = sampling_kwargs.get("entropix_sampling", False)
refine_on_stop = sampling_kwargs.get("refine_on_stop", False)
input_prompt_prefix = sampling_kwargs.get("input_prompt_prefix", False)
layer_skip = sampling_kwargs.get("layer_skip", False)
prefix_silence = sampling_kwargs.get("prefix_silence", 0.0)
mirostat_tau = sampling_kwargs.get("mirostat_tau", 0.0)
mirostat_eta = sampling_kwargs.get("mirostat_eta", 0.0)
# inference len
if task_list is not None and task_list[0] == "len":
sequence_list = [ torch.tensor([0], device=device,dtype=torch.int16) for _ in range(batch_size) ]
@ -534,7 +483,7 @@ class AR_NAR(Base):
stop_token = 10
task_list = [ "len" for _ in range(batch_size) ]
quant_levels = [ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
quant_levels = [ 0 for _ in range( max( batch_size, beam_width ) ) ]
for n in trange(10, desc="AR", disable=disable_tqdm):
len_list = sequence_list
@ -586,22 +535,13 @@ class AR_NAR(Base):
state = None
mirostat = [
{"n": 1024, "tau": sampling_mirostat_tau, "eta": sampling_mirostat_eta, "max_surprise": sampling_mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if sampling_mirostat_tau > 0.0 else None
{"n": 1024, "tau": mirostat_tau, "eta": mirostat_eta, "max_surprise": mirostat_eta * 2, "error_surprise": 0, "running_total_surprise": 0}
] * batch_size if mirostat_tau > 0.0 else None
scores = [ 1.0 ] * sampling_beam_width
scores = [ 1.0 ] * beam_width
metrics = []
# ick
"""
low_temperature = False # sampling_temperature < 0.6 # sampling_repetition_penalty == 1.0 and sampling_temperature == 0.0 #
low_temperature_range = cfg.dataset.frames_per_second * 5
original_sampling_temperature = sampling_temperature
original_sampling_repetition_penalty = sampling_repetition_penalty
original_sampling_repetition_penalty_decay = sampling_repetition_penalty_decay
"""
sampling_layer_skip_variables = {} if sampling_layer_skip else None
if sampling_layer_skip:
@ -611,6 +551,7 @@ class AR_NAR(Base):
sampling_layer_skip_variables["varentropy_threshold"] = sampling_layer_skip_varentropy_threshold
if sampling_layer_skip_exit_layer >= 0:
sampling_layer_skip_variables["max_layer"] = sampling_layer_skip_exit_layer
"""
for i, sequence in enumerate( sequence_list ):
# add <bos> to text for STT
@ -627,23 +568,11 @@ class AR_NAR(Base):
# start_slice[i] = sequence_list[i].shape[0]
# get next in sequence
for n in trange(max_steps // max(1, self.causal_size), desc="AR", disable=disable_tqdm):
for n in trange(max_duration // max(1, self.causal_size), desc="AR", disable=disable_tqdm):
# it would technically be faster to just append the new token's embedding to the inputs, but there's a VERY small performance gain from doing it, so it's not worth it
text_list = [ sequence_list[i] if task in text_task else text_list[i] for i, task in enumerate(task_list) ]
resps_list = [ sequence_list[i] if task not in text_task else resps_list[i] for i, task in enumerate(task_list) ]
# greedy sampling in the AR *does* work, but requires some quasi-exotic sampling to work around the initial burst of garbage from polluting the rest of the sequence
# naturally, rep pen wrangles this initial burst of noise, but naively relying on rep_pen is no good, as it fails after ~6 seconds of audio
# however, switching to a default sampling temperature with "clean greedy sampled codes" will make the rest of sequence sound as if it were greedy sampled
# to-do: tune these values, maybe have it factor based on confidence scores or something
"""
if low_temperature:
enabled = n < low_temperature_range
sampling_repetition_penalty = 1.125 if enabled else 1.25
#sampling_repetition_penalty_decay = 0.0 if enabled else original_sampling_repetition_penalty_decay
#sampling_temperature = original_sampling_temperature if enabled else 1.0
"""
inputs = self.inputs(
text_list=text_list,
proms_list=proms_list,
@ -652,7 +581,7 @@ class AR_NAR(Base):
tone_list=tone_list,
len_list=len_list,
task_list=task_list,
quant_levels=[ 0 for _ in range( max( batch_size, sampling_beam_width ) ) ]
quant_levels=[ 0 for _ in range( max( batch_size, beam_width ) ) ]
)
# to-do: find an elegant way to write this
@ -660,31 +589,14 @@ class AR_NAR(Base):
inputs=inputs,
state=state,
#layer_skip_variables=sampling_layer_skip_variables,
output_attentions=sampling_entropix,
output_attentions=entropix_sampling,
)
logits, state = output.logits, output.state
sampled = super().sample(
logits=logits,
prev_list=None if sampling_repetition_penalty == 1.0 and sampling_length_penalty == 0.0 else [ resps_list[i] if task not in text_task else text_list[i] for i, task in enumerate( task_list ) ],
temperature=sampling_temperature,
min_temperature=sampling_min_temperature,
top_p=sampling_top_p,
top_k=sampling_top_k,
min_p=sampling_min_p,
repetition_penalty=sampling_repetition_penalty,
repetition_penalty_decay=sampling_repetition_penalty_decay,
length_penalty=sampling_length_penalty,
beam_width=sampling_beam_width,
mirostat=mirostat,
dry_multiplier=sampling_dry_multiplier,
dry_base=sampling_dry_base,
dry_allowed_length=sampling_dry_allowed_length,
attentions=output.attentions if sampling_entropix else None,
prev_list=[ resps_list[i] if task not in text_task else text_list[i] for i, task in enumerate( task_list ) ],
**(sampling_kwargs | {"attentions": output.attentions if entropix_sampling else None}),
)
r = sampled[0]
@ -698,17 +610,17 @@ class AR_NAR(Base):
if mirostat is not None:
mirostat = sampled.scores
elif sampling_beam_width > 0:
elif beam_width > 0:
# expand tuple
s = sampled.scores
# first step, expand batch
if batch_size == 1:
batch_size = sampling_beam_width
text_list = text_list * sampling_beam_width
proms_list = proms_list * sampling_beam_width
sequence_list = sequence_list * sampling_beam_width
task_list = task_list * sampling_beam_width
start_slice = start_slice * sampling_beam_width
batch_size = beam_width
text_list = text_list * beam_width
proms_list = proms_list * beam_width
sequence_list = sequence_list * beam_width
task_list = task_list * beam_width
start_slice = start_slice * beam_width
stopped = torch.zeros(batch_size, device=device).bool()
scores = [ scores[i] + score for i, score in enumerate(s) ]
@ -727,22 +639,21 @@ class AR_NAR(Base):
break
# to-do for layerskip / speculative sampling: rerun the last sequence again at max depth
"""
if metrics:
from ..plot import plot_sample_metrics
filename = "metrics"
if sampling_entropix:
filename += f'[entropix]'
"""
if entropix_sampling:
filename += f'[entropix_sampling]'
if sampling_layer_skip_exit_layer >= 0:
filename += f'[{sampling_layer_skip_exit_layer+1}]'
"""
plot_sample_metrics( metrics, filename=f'{filename}.png' )
"""
# pick the best scoring candidate
# desu this is always going to be candidate 0
if sampling_beam_width:
if beam_width:
sequence_list = sequence_list[:1]
task_list = task_list[:1]
@ -751,7 +662,7 @@ class AR_NAR(Base):
# remove <bos>
sequence_list = [ sequence_list[i][start_slice[i]:] for i, task in enumerate( task_list ) ]
if sampling_refine_on_stop:
if refine_on_stop:
# get how much we need to slice from the end
slice_lengths = [ sequence.shape[-1] for sequence in sequence_list ]
# -1 for the stop token
@ -777,69 +688,10 @@ class AR_NAR(Base):
training: bool | int | None = None,
max_steps: int = 1000,
max_levels: int = 0,
input_prompt_prefix: bool = False,
prefix_silence: float = 1.0,
denoise_start: float = 0.0,
sampling_temperature: float = 1.0,
sampling_min_temperature: float = -1.0,
sampling_top_k: int = -100,
sampling_top_p: float = 1.0,
sampling_min_p: float = 0.0,
sampling_repetition_penalty: float = 1.0,
sampling_repetition_penalty_decay: float = 0.0,
sampling_length_penalty: float = 0.0,
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
sampling_dry_multiplier=0.0,
sampling_dry_base=1.75,
sampling_dry_allowed_length=2,
sampling_entropix=False,
sampling_layer_skip: bool = False,
sampling_layer_skip_exit_layer: int = -1,
sampling_layer_skip_entropy_threshold: float = -1,
sampling_layer_skip_varentropy_threshold: float = -1,
sampling_refine_on_stop: bool = False,
disable_tqdm=False,
use_lora=None,
**sampling_kwargs,
):
kwargs = dict(
max_steps=max_steps,
max_levels=max_levels,
input_prompt_prefix=input_prompt_prefix,
prefix_silence=prefix_silence,
denoise_start=denoise_start,
sampling_temperature=sampling_temperature,
sampling_min_temperature=sampling_min_temperature,
sampling_top_k=sampling_top_k,
sampling_top_p=sampling_top_p,
sampling_min_p=sampling_min_p,
sampling_repetition_penalty=sampling_repetition_penalty,
sampling_repetition_penalty_decay=sampling_repetition_penalty_decay,
sampling_length_penalty=sampling_length_penalty,
sampling_beam_width=sampling_beam_width,
sampling_mirostat_tau=sampling_mirostat_tau,
sampling_mirostat_eta=sampling_mirostat_eta,
sampling_dry_multiplier=sampling_dry_multiplier,
sampling_dry_base=sampling_dry_base,
sampling_dry_allowed_length=sampling_dry_allowed_length,
sampling_entropix=sampling_entropix,
sampling_layer_skip=sampling_layer_skip,
sampling_layer_skip_exit_layer=sampling_layer_skip_exit_layer,
sampling_layer_skip_entropy_threshold=sampling_layer_skip_entropy_threshold,
sampling_layer_skip_varentropy_threshold=sampling_layer_skip_varentropy_threshold,
sampling_refine_on_stop=sampling_refine_on_stop,
disable_tqdm=disable_tqdm,
use_lora=use_lora,
)
# deduce batch_size
if text_list is not None:
default_task = "tts"
@ -883,7 +735,7 @@ class AR_NAR(Base):
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
**kwargs,
**sampling_kwargs,
)
# is AR
@ -895,7 +747,7 @@ class AR_NAR(Base):
lang_list=lang_list,
tone_list=tone_list,
len_list=len_list,
**kwargs,
**sampling_kwargs,
)
@ -1081,12 +933,12 @@ def example_usage():
text_list, proms_list, resp_list, task_list = sample_data( task )
if task == "tts-nar":
len_list = engine(text_list, proms_list, task_list=["len"], max_steps=5, sampling_temperature=0.0 )
len_list = engine(text_list, proms_list, task_list=["len"], max_steps=5, temperature=0.0 )
len_list = [ resp_list[0].shape[0] for l in len_list ]
resps_list = engine( text_list, proms_list, len_list=len_list, sampling_temperature=0.0 )
resps_list = engine( text_list, proms_list, len_list=len_list, temperature=0.0 )
else:
resps_list = engine( text_list, proms_list, task_list=["tts"], max_steps=steps, sampling_temperature=1.0 )
resps_list = engine( text_list, proms_list, resps_list=resps_list, sampling_temperature=0.0 )
resps_list = engine( text_list, proms_list, task_list=["tts"], max_duration=steps, temperature=1.0 )
resps_list = engine( text_list, proms_list, resps_list=resps_list, temperature=0.0 )
for i, o in enumerate(resps_list):
_ = decode_to_file(o.to(dtype=torch.int32), f"data/{cfg.model.arch_type}.{cfg.audio_backend}.{i}.{name}.{task}.wav", device=cfg.device)

View File

@ -1680,29 +1680,31 @@ class Base(nn.Module):
self,
logits: list[Tensor], # logit scores
prev_list: list[Tensor] | None = None, # previous tokens
quant_levels: int | list[int] | Tensor | None = None,
# base sampling parameters
temperature: float = 1.0,
min_temperature: float = -1.0, # activates dynamic temperature sampling
top_k: int = -100,
top_p: float = 1.0,
min_p: float = 0.0,
# repetition penalty parameters
repetition_penalty: float = 1.0,
repetition_penalty_decay: float = 0.0,
# length penalty parameters
length_penalty: float = 0.0,
# beam sampling parameters
beam_width: int = 0,
# mirostat sampling parameters
mirostat: list[dict] | None = None,
# DRY sampling parameters
dry_multiplier=0.0,
dry_base=1.75,
dry_allowed_length=2,
# other
attentions=None,
quant_levels: int | list[int] | Tensor | None = None,
**sampling_kwargs,
):
# yikes
temperature = sampling_kwargs.get("temperature", 1.0)
min_temperature = sampling_kwargs.get("min_temperature", -1.0)
top_k = sampling_kwargs.get("top_k", -100)
top_p = sampling_kwargs.get("top_p", 1.0)
min_p = sampling_kwargs.get("min_p", 0.0)
# repetition penalty parameters
repetition_penalty = sampling_kwargs.get("repetition_penalty", 1.0)
repetition_penalty_decay = sampling_kwargs.get("repetition_penalty_decay", 0.0)
# length penalty parameters
length_penalty = sampling_kwargs.get("length_penalty", 0.0)
# beam sampling parameters
beam_width = sampling_kwargs.get("beam_width", 0)
# mirostat sampling parameters
mirostat = sampling_kwargs.get("mirostat", None)
# DRY sampling parameters
dry_multiplier = sampling_kwargs.get("dry_multiplier", 0.0)
dry_base = sampling_kwargs.get("dry_base", 1.75)
dry_allowed_length = sampling_kwargs.get("dry_allowed_length", 2)
attentions = sampling_kwargs.get("attentions", None)
batch_size = len( logits )
if min_temperature < 0:

View File

@ -14,5 +14,6 @@ from .utils import (
timer,
prune_missing,
clamp,
md5_hash
md5_hash,
convert_kwargs
)

View File

@ -32,11 +32,27 @@ from datetime import datetime
T = TypeVar("T")
# removes prefix from key in a dict
# useful for mapping args like ar_temperature => temperature
def convert_kwargs( kwargs, prefix ):
copied = {} | kwargs
for key, value in copied.items():
if not key.startswith( prefix ):
continue
kwargs.pop(key)
kwargs[key[len(prefix):]] = value
return kwargs
# hashes values or a list of values
def md5_hash( x ):
if isinstance( x, list ):
return md5_hash(":".join([ md5_hash( _ ) for _ in x ]))
return hashlib.md5(str(x).encode("utf-8")).hexdigest()
# removes entries from a dict if that key is missing from the source
def prune_missing( source, dest, recurse=True, path=[], parent_is_obj=None, return_missing=True ):
is_obj = hasattr( source, "__dict__" )
if parent_is_obj is None:

View File

@ -192,11 +192,11 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
raise Exception("No model loaded.")
if kwargs.pop("dynamic-sampling", False):
kwargs['min-ar-temp'] = 0.01 if kwargs['ar-temp'] > 0.01 else 0.0
kwargs['min-nar-temp'] = 0.0 # 0.85 if kwargs['nar-temp'] > 0.85 else 0.0 # should probably disable it for the NAR
kwargs['min-ar-temperature'] = 0.01 if kwargs['ar-temperature'] > 0.01 else 0.0
kwargs['min-nar-temperature'] = 0.0 # 0.85 if kwargs['nar-temperature'] > 0.85 else 0.0 # should probably disable it for the NAR
else:
kwargs['min-ar-temp'] = -1
kwargs['min-nar-temp'] = -1
kwargs['min-ar-temperature'] = -1
kwargs['min-nar-temperature'] = -1
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
# I'm very sure I can procedurally generate this list
@ -205,14 +205,15 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
parser.add_argument("--references", type=str, default=kwargs["reference"])
parser.add_argument("--language", type=str, default=kwargs["language"])
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"] if cfg.experimental else False)
parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*cfg.dataset.frames_per_second))
parser.add_argument("--max-nar-levels", type=int, default=kwargs["max-nar-levels"] if cfg.experimental else 0)
parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"])
parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
parser.add_argument("--min-nar-temp", type=float, default=kwargs["min-nar-temp"])
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"] if cfg.experimental else 0)
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"])
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second))
parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"])
parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"])
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"])
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"])
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"])
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
@ -227,10 +228,11 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
parser.add_argument("--entropix-sampling", action="store_true")
parser.add_argument("--layer-skip", action="store_true")
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"] if cfg.experimental else -1)
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"] if cfg.experimental else 0.1)
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"] if cfg.experimental else 0.1)
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"])
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"])
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"])
parser.add_argument("--refine-on-stop", action="store_true")
parser.add_argument("--denoise-start", type=float, default=0.0)
args, unknown = parser.parse_known_args()
if is_windows:
@ -255,6 +257,27 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
tts = init_tts()
gr.Info("Inferencing...")
sampling_kwargs = dict(
max_duration=args.max_duration,
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
entropix_sampling=args.entropix_sampling,
layer_skip=args.layer_skip,
layer_skip_exit_layer=args.layer_skip_exit_layer,
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
refine_on_stop=args.refine_on_stop,
denoise_start=args.denoise_start,
prefix_silence=args.prefix_silence,
input_prompt_prefix=args.input_prompt_prefix,
)
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t:
wav, sr = tts.inference(
@ -262,34 +285,7 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
language=args.language,
task=args.task,
references=args.references.split(";") if args.references is not None else [],
out_path=tmp.name,
max_ar_steps=args.max_ar_steps,
max_nar_levels=args.max_nar_levels,
input_prompt_length=args.input_prompt_length,
input_prompt_prefix=args.input_prompt_prefix,
prefix_silence=args.prefix_silence,
ar_temp=args.ar_temp,
nar_temp=args.nar_temp,
min_ar_temp=args.min_ar_temp,
min_nar_temp=args.min_nar_temp,
top_p=args.top_p,
top_k=args.top_k,
min_p=args.min_p,
beam_width=args.beam_width,
repetition_penalty=args.repetition_penalty,
repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
mirostat_tau=args.mirostat_tau,
mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier,
dry_base=args.dry_base,
dry_allowed_length=args.dry_allowed_length,
entropix_sampling=args.entropix_sampling,
layer_skip=args.layer_skip,
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
refine_on_stop=args.refine_on_stop,
**sampling_kwargs,
)
wav = wav.squeeze(0).cpu().numpy()
@ -301,20 +297,28 @@ def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
raise Exception("No model loaded.")
if kwargs.pop("dynamic-sampling", False):
kwargs['min-ar-temp'] = 0.85 if kwargs['ar-temp'] > 0.85 else 0.0
kwargs['min-ar-temperature'] = 0.85 if kwargs['ar-temperature'] > 0.85 else 0.0
else:
kwargs['min-ar-temp'] = -1
kwargs['min-ar-temperature'] = -1
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False)
# I'm very sure I can procedurally generate this list
parser.add_argument("--text", type=str, default=kwargs["text"])
parser.add_argument("--task", type=str, default="tts")
parser.add_argument("--references", type=str, default=kwargs["reference"])
parser.add_argument("--language", type=str, default=kwargs["language"])
parser.add_argument("--max-ar-steps", type=int, default=0)
parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
parser.add_argument("--min-ar-temp", type=float, default=kwargs["min-ar-temp"])
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"])
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second))
parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"])
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"])
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"])
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"])
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"])
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"])
parser.add_argument("--top-p", type=float, default=kwargs["top-p"])
parser.add_argument("--top-k", type=int, default=kwargs["top-k"])
parser.add_argument("--min-p", type=int, default=kwargs["min-p"])
parser.add_argument("--min-p", type=float, default=kwargs["min-p"])
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"])
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"])
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"])
@ -325,6 +329,12 @@ def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"])
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"])
parser.add_argument("--entropix-sampling", action="store_true")
parser.add_argument("--layer-skip", action="store_true")
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"])
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"])
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"])
parser.add_argument("--refine-on-stop", action="store_true")
parser.add_argument("--cfg-strength", type=float, default=kwargs["cfg-strength"])
args, unknown = parser.parse_known_args()
@ -334,17 +344,36 @@ def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
"""
args.references = args.references.split(";") if args.references is not None else []
if args.max_ar_steps == 0:
if args.max_duration == 0:
for i, path in enumerate( args.references ):
metadata = torchaudio.info(path)
duration = metadata.num_frames / metadata.sample_rate
args.max_ar_steps += duration
args.max_ar_steps = math.floor( args.max_ar_steps * 20 ) # assume 20 tokens per second
args.max_duration += duration
args.max_duration = math.floor( args.max_duration * 20 ) # assume 20 tokens per second
if kwargs.pop("entropix-sampling", False):
args.entropix_sampling = True
tts = init_tts()
sampling_kwargs = dict(
max_duration=args.max_duration,
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature,
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature,
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p,
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
beam_width=args.beam_width,
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length,
entropix_sampling=args.entropix_sampling,
layer_skip=args.layer_skip,
layer_skip_exit_layer=args.layer_skip_exit_layer,
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold,
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold,
refine_on_stop=args.refine_on_stop,
denoise_start=args.denoise_start,
)
gr.Info("Inferencing...")
with timer("Inferenced in") as t:
@ -353,21 +382,7 @@ def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
language=args.language,
task="stt",
references=args.references,
max_ar_steps=args.max_ar_steps,
ar_temp=args.ar_temp,
min_ar_temp=args.min_ar_temp,
top_p=args.top_p,
top_k=args.top_k,
min_p=args.min_p,
repetition_penalty=args.repetition_penalty,
repetition_penalty_decay=args.repetition_penalty_decay,
length_penalty=args.length_penalty,
mirostat_tau=args.mirostat_tau,
mirostat_eta=args.mirostat_eta,
dry_multiplier=args.dry_multiplier,
dry_base=args.dry_base,
dry_allowed_length=args.dry_allowed_length,
entropix_sampling=args.entropix_sampling,
**sampling_kwargs,
)
return text
@ -424,12 +439,13 @@ with ui:
with gr.Column(scale=7):
with gr.Tab("Basic Settings"):
with gr.Row():
layout["inference_tts"]["inputs"]["max-seconds"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.")
layout["inference_tts"]["inputs"]["max-duration"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="Limits how many steps to perform in the AR pass.")
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.")
with gr.Row():
layout["inference_tts"]["inputs"]["ar-temp"] = gr.Slider(value=0.5, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
layout["inference_tts"]["inputs"]["nar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy* sample)")
layout["inference_tts"]["inputs"]["nar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)")
with gr.Row():
layout["inference_tts"]["inputs"]["cfg-strength"] = gr.Slider(value=0.0, minimum=0.0, maximum=3.0, step=0.05, label="CFG Strength", info="Classifier Free Guidance scale")
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
with gr.Tab("Sampler Settings"):
with gr.Row():
@ -438,7 +454,7 @@ with ui:
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
with gr.Row():
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.5, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
with gr.Row():
@ -448,24 +464,24 @@ with ui:
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
if cfg.experimental:
with gr.Tab("Experimental Settings"):
with gr.Row():
layout["inference_tts"]["inputs"]["max-nar-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
with gr.Row():
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
with gr.Row():
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
with gr.Row():
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
with gr.Row():
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
with gr.Tab("Experimental Settings", visible=cfg.experimental):
with gr.Row():
layout["inference_tts"]["inputs"]["max-steps"] = gr.Slider(value=25, minimum=1, maximum=50, step=1, label="Max NAR Steps", info="Limits how many steps to perform in the NAR (demask) pass.")
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
with gr.Row():
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
with gr.Row():
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
with gr.Row():
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
with gr.Row():
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
layout["inference_tts"]["buttons"]["inference"].click(
fn=do_inference_tts,
@ -485,7 +501,7 @@ with ui:
with gr.Column(scale=7):
with gr.Tab("Basic Settings"):
with gr.Row():
layout["inference_stt"]["inputs"]["ar-temp"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
with gr.Row():
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
@ -496,7 +512,7 @@ with ui:
layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P")
layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
with gr.Row():
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.25, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
with gr.Row():