cringe code to convert to LlamaForCausalLM-happy weights + tokenizer dict (still need to write logic to actually use these weights for proper inferencing)

This commit is contained in:
mrq 2024-12-03 10:18:58 -06:00
parent 84a05acb6d
commit 31ab90d84a
2 changed files with 172 additions and 1 deletions

View File

@ -70,7 +70,7 @@ For the most part, the model is complete. With the `NAR-len` being crammed on, I
However, while this solution boasts being lightweight, there are some caveats for its given size
* its at capacity on what it *can* do without additional tasks to augment it further
* post-fixing it with additional layers glued on doesn't seem to offer very much work (12 => 16 layers)
* post-fixing it with additional layers glued on doesn't seem to offer very much improvement (12 => 16 layers)
* wrangling it is a bit of a chore, as some voices work fine under the `AR` but not the `NAR-len`, and vice-versa
* some voices outright refuse to work without LoRA training
* some sampler settings works on some voices, but others need some tweaking

View File

@ -10,7 +10,177 @@ from .models.lora import lora_get_state_dict
from .utils.io import torch_save, torch_load
# stitches embeddings into one embedding & classifier => lm_head, for use in a HF compatible weight
# *will* require retraining because the classifier is in one contiguous space, and proms are NOT summed
@torch.no_grad()
def convert_to_hf( state_dict, config = None, save_path = None ):
# to-do: infer all of this from the existing state_dict, should be easy by checking shape
model_dim = 1024
n_text_tokens = 256
n_audio_tokens = 1024
n_resp_levels = 8
n_len_tokens = 11
n_lang_tokens = 4
n_task_tokens = 9
# the new tokenizer to use
tokenizer_append = {}
l_tokens = [
n_text_tokens, # text
n_audio_tokens * n_resp_levels, # prom
(n_audio_tokens + 1) * 2, # resp: AR + NAR-len (with stop/mask)
(n_audio_tokens) * (n_resp_levels - 1), # NAR
n_resp_levels, # RVQ level
n_len_tokens, # len tokens
1, # separator
n_lang_tokens, # langs
n_task_tokens, # tasks
]
n_tokens = sum(l_tokens)
lang_map = [
"en",
"ja",
"de",
"fr",
]
task_map = [
"tts",
"tts-c",
"ns",
"sr",
"tse",
"soe",
"mask",
"eoe",
"stt",
]
embedding = torch.nn.Embedding( n_tokens, model_dim )
classifier = torch.nn.Linear( model_dim, n_tokens )
#embedding.weight.requires_grad = False
#classifier.weight.requires_grad = False
#classifier.bias.requires_grad = False
# inject text tokens
token_start = 0
token_end = l_tokens[0]
embedding.weight[token_start:token_end] = state_dict['module']['text_emb.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.9.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.9.bias']
# tokenizer already has these tokens
# inject prom tokens
token_start = token_end
token_end += l_tokens[1]
for l in range(n_resp_levels):
start = token_start + (l*n_resp_levels)
end = start + n_audio_tokens
embedding.weight[start:end] = state_dict['module'][f'proms_emb.embeddings.{l}.weight']
# there's no corresponding classifier
#classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight']
#classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<P:{l}:{t}>'] = start + t
# inject AR
token_start = token_end
token_end += l_tokens[2] // 2
embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.0.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.0.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.0.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<AR:0:0:{t}>'] = token_start + t
tokenizer_append[f'<AR:0:0:STOP>'] = token_start + 1024
# inject NAR-len
token_start = token_end
token_end += l_tokens[2] // 2
embedding.weight[token_start:token_end] = state_dict['module'][f'resps_emb.embeddings.8.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.8.weight']
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.8.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<NAR:0:0:{t}>'] = token_start + t
tokenizer_append[f'<NAR:0:0:STOP>'] = token_start + 1024
# inject NAR
token_start = token_end
token_end += l_tokens[3]
for l in range(1, n_resp_levels):
start = token_start + ((l-1)*n_resp_levels)
end = start + n_audio_tokens
embedding.weight[start:end] = state_dict['module'][f'resps_emb.embeddings.{l}.weight']
classifier.weight[start:end] = state_dict['module'][f'classifiers.proj.{l}.weight']
classifier.bias[start:end] = state_dict['module'][f'classifiers.proj.{l}.bias']
for t in range(n_audio_tokens):
tokenizer_append[f'<NAR:{l-1}:{l}:{t}>'] = start + t
# inject RVQ level
token_start = token_end
token_end += l_tokens[4]
embedding.weight[token_start:token_end] = state_dict['module'][f'rvq_l_emb.weight']
# there is no corresponding classifier
for l in range(n_resp_levels):
tokenizer_append[f'<RVQ:{l}>'] = token_start + l
# inject len
token_start = token_end
token_end += l_tokens[5]
embedding.weight[token_start:token_end] = state_dict['module'][f'len_emb.weight']
classifier.weight[token_start:token_end] = state_dict['module']['classifiers.proj.10.weight'][0:n_len_tokens] # erroneously sized as 256
classifier.bias[token_start:token_end] = state_dict['module']['classifiers.proj.10.bias'][0:n_len_tokens] # erroneously sized as 256
for t in range(n_len_tokens):
tokenizer_append[f'<len:{t}>'] = token_start + t
# inject sep
token_start = token_end
token_end += l_tokens[6]
embedding.weight[token_start:token_end] = state_dict['module']['sep']
tokenizer_append['<sep>'] = token_start
# there is no corresponding classifier
# inject langs
token_start = token_end
token_end += l_tokens[7]
embedding.weight[token_start:token_end] = state_dict['module']['langs_emb.weight']
for l in range(n_lang_tokens):
lang = lang_map[l]
tokenizer_append[f'<lang:{lang}>'] = token_start + l
# there is no corresponding classifier
# inject tasks
token_start = token_end
token_end += l_tokens[8]
embedding.weight[token_start:token_end] = state_dict['module']['tasks_emb.weight']
for l in range(n_task_tokens):
task = task_map[l]
tokenizer_append[f'<task:{task}>'] = token_start + l
# there is no corresponding classifier
model_dict = {}
# filter out the underlying model weights and extract them
for k in state_dict['module'].keys():
if not k.startswith('model.'):
continue
model_dict[k] = state_dict['module'][k].clone()
del state_dict['module']
embedding_dict = embedding.state_dict()
classifier_dict = classifier.state_dict()
model_dict['model.embed_tokens.weight'] = embedding_dict['weight']
model_dict['lm_head.weight'] = classifier_dict['weight']
model_dict['lm_head.bias'] = classifier_dict['bias']
state_dict['module'] = model_dict
state_dict['vocab'] = tokenizer_append
return state_dict
"""
n_tokens = 256 + (1024 * 8) + (1024 * 8) + 1
token_dim = 1024
embedding = torch.nn.Embedding(n_tokens, token_dim)
@ -59,6 +229,7 @@ def convert_to_hf( state_dict, config = None, save_path = None ):
del state_dict['module']['classifier.bias']
return state_dict
"""
# yanks a LoRA from the training checkpoint
def extract_lora( state_dict, config = None, save_path = None, dtype = None ):