sampler update (some brainworm just never actually had a sampler for sample_type=path)

This commit is contained in:
mrq 2024-06-14 16:55:40 -05:00
parent b3b67f34ac
commit 31f71fa134
3 changed files with 129 additions and 31 deletions

View File

@ -12,7 +12,7 @@ import itertools
from .config import cfg
from .emb.qnt import trim, trim_random, repeat_extend_audio, merge_audio, decode_to_file
from .utils.sampler import Sampler
from .utils.sampler import PoolSampler, OrderedSampler, RandomSampler
from .utils.distributed import global_rank, local_rank, world_size
from collections import defaultdict
@ -424,6 +424,7 @@ class Dataset(_Dataset):
):
super().__init__()
self._head = None
self.shuffle = False
self.sampler = None
self.paths = []
@ -503,7 +504,6 @@ class Dataset(_Dataset):
# just interleave
self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)]
self.samplers = { name: Sampler( paths, keep_all=True ) for name, paths in self.paths_by_spkr_name.items() }
# dict of speakers keyed by speaker group
self.spkrs_by_spkr_group = {}
@ -521,8 +521,6 @@ class Dataset(_Dataset):
self.spkr_groups = list(self.spkrs_by_spkr_group.keys())
self.spkr_samplers = { name: Sampler( [*set(speakers)], keep_all=True ) for name, speakers in self.spkrs_by_spkr_group.items() }
self.noise_paths = _load_paths(cfg.dataset.noise, "noise")
self.noise_paths = list(itertools.chain.from_iterable(self.noise_paths.values()))
@ -539,6 +537,20 @@ class Dataset(_Dataset):
if len(self.paths) == 0:
raise ValueError(f"No valid path is found for {self.dataset_type}")
sampler_path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt"
if self.sampler_type == "path":
self.sampler = OrderedSampler( len(self) )
self.samplers = {}
self.spkr_samplers = {}
else:
self.sampler = RandomSampler( len(self) )
self.samplers = { name: PoolSampler( paths, keep_all=True ) for name, paths in self.paths_by_spkr_name.items() }
self.spkr_samplers = { name: PoolSampler( [*set(speakers)], keep_all=True ) for name, speakers in self.spkrs_by_spkr_group.items() }
self.load_state_dict()
def get_speaker(self, path):
if isinstance(path, str):
path = Path(path)
@ -568,21 +580,39 @@ class Dataset(_Dataset):
def tasks(self):
return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse"
def save_state_dict(self, path):
state_dict = {
"samplers": { name: sampler.current_pool for name, sampler in self.samplers.items() }
}
def save_state_dict(self, path = None):
if path is None:
path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt"
if self.sampler_type == "path":
state_dict = self.sampler.get_state()
else:
state_dict = {
"samplers": { name: sampler.get_state() for name, sampler in self.samplers.items() },
"spkr_samplers": { name: sampler.get_state() for name, sampler in self.spkr_samplers.items() },
}
torch.save(state_dict, path)
def load_state_dict(self, path):
state_dict = torch.load(path)
def load_state_dict(self, path = None):
if path is None:
path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt"
if "samplers" in state_dict:
# better than naively setting the entire object
if not path.exists():
return
state_dict = torch.load(path)
if self.sampler_type == "path":
state_dict = self.sampler.load_state(state_dict)
else:
for name, sampler in state_dict["samplers"].items():
if name not in self.samplers:
continue
self.samplers[name].current_pool = sampler
self.samplers[name].load_state( sampler )
for name, sampler in state_dict["spkr_samplers"].items():
if name not in self.spkr_samplers:
continue
self.spkr_samplers[name].load_state( sampler )
def _get_phone_symmap(self):
return get_phone_symmap()
@ -965,36 +995,29 @@ def _seed_worker(worker_id):
def _create_dataloader(dataset, training):
sampler = None
shuffle = True
"""
if cfg.distributed and training:
sampler = DistributedSampler(dataset)
shuffle = False
"""
"""
return DataLoader(
dataset=dataset,
batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size,
shuffle=shuffle,
shuffle=dataset.shuffle,
drop_last=training,
num_workers=cfg.dataset.workers,
collate_fn=collate_fn,
persistent_workers=cfg.dataset.workers > 1,
pin_memory=False, # True,
worker_init_fn=_seed_worker,
sampler=sampler,
sampler=dataset.sampler,
)
def create_datasets():
train_dataset = Dataset( training=True )
val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False )
train_state_path = cfg.rel_path / f"sampler.rank{global_rank()}.pt"
if train_state_path.exists():
train_dataset.load_state_dict( train_state_path )
return train_dataset, val_dataset
@ -1312,8 +1335,6 @@ if __name__ == "__main__":
for i in range(len(v)):
print(f'{k}[{i}]:', v[i])
#train_dl.dataset.save_state_dict(cfg.rel_path / "train_dataset.pt")
elif args.action == "tasks":
index = 0
cfg.dataset.tasks_list = args.tasks.split(",")

View File

@ -2,11 +2,15 @@ from dataclasses import dataclass
from typing import Any
import random
@dataclass
class Sampler():
import torch
from torch.utils.data import Sampler
# Randomly picks an index from an array of indices
class PoolSampler():
def __init__( self, pool = [], keep_all = False ):
self.length = len(pool)
self.global_pool = pool if keep_all else None
self.global_indices = [ i for i in range(len(pool)) ]
self.global_indices = [ i for i in range(self.length) ]
self.reset()
def reset(self):
@ -25,5 +29,78 @@ class Sampler():
# map indices to our real values
return pool[index] if pool is not None else index
def __len__(self):
return self.length # len(self.current_pool)
def __iter__(self):
while len(self.current_pool) > 0:
yield self.sample()
def __call__(self, *args, **kwargs):
return self.sample(*args, **kwargs)
return self.sample(*args, **kwargs)
def get_state(self):
return { "length": self.length, "global_pool": self.global_pool, "global_indices": self.global_indices, "current_pool": self.current_pool }
def set_state(self, state):
self.length = state["length"]
self.global_pool = state["global_pool"]
self.global_indices = state["global_indices"]
self.current_pool = state["current_pool"]
# "Samples" through a fixed sequence from 0 to length
# Necessary for our "shuffle+sort by duration+interleave" sampling method
# Allows saving and loading state
class OrderedSampler(Sampler):
def __init__( self, length ):
self.position = 0
self.length = length
def __len__(self):
return self.length
def __iter__(self):
if self.position >= self.length:
self.position = 0
while self.position < self.length:
yield self.position
self.position += 1
def get_state(self):
return { "position": self.position, "length": self.length }
def set_state(self, state):
self.position = state["position"]
self.length = state["length"]
# Randomly samples indices from a given sequence from 0 to length
# Allows saving and loading state
class RandomSampler(Sampler):
def __init__( self, length ):
self.position = 0
self.length = length
self.generator = torch.Generator()
self.perm = torch.randperm(self.length, generator=self.generator)
def __len__(self):
return self.length
def __iter__(self):
if self.position >= self.length:
self.position = 0
self.perm = torch.randperm(self.length, generator=self.generator)
while self.position < self.length:
yield self.perm[self.position]
self.position += 1
def get_state(self):
return { "position": self.position, "length": self.length, "perm": self.perm, "generator": self.generator.get_state() }
def set_state(self, state):
self.position = state["position"]
self.length = state["length"]
self.perm = state["perm"]
self.generator.set_state(state["generator"])

View File

@ -218,7 +218,7 @@ def train(
print("Failed to set LR rate to:", rate, str(e))
if "export" in command:
train_dl.dataset.save_state_dict(cfg.rel_path / f"sampler.rank{global_rank()}.pt")
train_dl.dataset.save_state_dict()
engines.save_checkpoint()
last_save_step = engines.global_step
@ -241,7 +241,7 @@ def train(
if engines.global_step != last_save_step:
if engines.global_step % save_ckpt_every == 0 or command in saving_commands:
train_dl.dataset.save_state_dict(cfg.rel_path / f"sampler.rank{global_rank()}.pt")
train_dl.dataset.save_state_dict()
engines.save_checkpoint()
last_save_step = engines.global_step