fixed xformers and flash_attn to actually work now
This commit is contained in:
parent
29c35528e5
commit
40e1799adc
|
@ -1,5 +1,6 @@
|
|||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
||||
|
||||
import math
|
||||
import torch
|
||||
from typing import Literal, overload, Optional, Tuple
|
||||
|
||||
|
@ -82,15 +83,13 @@ try:
|
|||
except Exception as e:
|
||||
print("Error while querying for `flash_attn` | support", e)
|
||||
|
||||
"""
|
||||
try:
|
||||
from xformers.ops import LowerTriangularMask
|
||||
from xformers.ops.fmha import memory_efficient_attention
|
||||
from xformers.ops.fmha.attn_bias import LowerTriangularFromBottomRightMask, LowerTriangularMask
|
||||
|
||||
AVAILABLE_ATTENTIONS.append("xformers")
|
||||
except Exception as e:
|
||||
print("Error while importing `xformers`", e)
|
||||
"""
|
||||
|
||||
if torch.backends.cuda.flash_sdp_enabled():
|
||||
AVAILABLE_ATTENTIONS.append("flash")
|
||||
|
@ -126,7 +125,7 @@ class LlamaAttention_Adapted(LlamaAttention):
|
|||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# Adapted from LlamaAttention.forward
|
||||
# Adapted from LlamaAttention.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
@ -152,6 +151,7 @@ class LlamaAttention_Adapted(LlamaAttention):
|
|||
position_embeddings=position_embeddings,
|
||||
)
|
||||
|
||||
dropout_rate = self.attention_dropout if self.training else 0.0
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
|
@ -173,6 +173,60 @@ class LlamaAttention_Adapted(LlamaAttention):
|
|||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
if self.mode in ["xformers", "flash_attn"]:
|
||||
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
||||
# to be able to avoid many of these transpose/reshape/view.
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
"""
|
||||
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||||
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||||
# cast them back in the correct dtype just to be sure everything works as expected.
|
||||
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||||
# in fp32. (LlamaRMSNorm handles it correctly)
|
||||
|
||||
input_dtype = query_states.dtype
|
||||
if input_dtype == torch.float32:
|
||||
if torch.is_autocast_enabled():
|
||||
target_dtype = torch.get_autocast_gpu_dtype()
|
||||
# Handle the case where the model is quantized
|
||||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||||
target_dtype = self.config._pre_quantization_dtype
|
||||
else:
|
||||
target_dtype = self.q_proj.weight.dtype
|
||||
|
||||
query_states = query_states.to(target_dtype)
|
||||
key_states = key_states.to(target_dtype)
|
||||
value_states = value_states.to(target_dtype)
|
||||
"""
|
||||
|
||||
if self.mode == "flash_attn":
|
||||
attn_output = flash_attn_func(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
causal=True,
|
||||
softmax_scale=1.0 / math.sqrt(self.head_dim),
|
||||
dropout_p=dropout_rate,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
||||
elif self.mode == "xformers":
|
||||
attn_output = memory_efficient_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_bias = LowerTriangularMask() if attention_mask is None or attention_mask[0, 0, 0, 1] == 0 else None,
|
||||
scale = 1.0 / math.sqrt(self.head_dim),
|
||||
p=dropout_rate
|
||||
)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
return attn_output, None, past_key_value
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
|
@ -190,85 +244,20 @@ class LlamaAttention_Adapted(LlamaAttention):
|
|||
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
||||
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
||||
is_causal = True if causal_mask is None and q_len > 1 else False
|
||||
|
||||
if self.mode == "flash_attn":
|
||||
attn_output = flash_attn_func(
|
||||
|
||||
with torch.nn.attention.sdpa_kernel(self.mode):
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
causal=True,
|
||||
softmax_scale=None, # 1, / math.sqrt(cfg.head_dim),
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
attn_mask=causal_mask,
|
||||
dropout_p=dropout_rate,
|
||||
is_causal=is_causal,
|
||||
)
|
||||
else:
|
||||
with torch.nn.attention.sdpa_kernel(self.mode):
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=causal_mask,
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
is_causal=is_causal,
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.view(bsz, q_len, -1)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output, None, past_key_value
|
||||
|
||||
"""
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
past_key_value = getattr(self, "past_key_value", past_key_value)
|
||||
|
||||
if past_key_value is not None:
|
||||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
|
||||
dropout_rate = self.attention_dropout if self.training else 0.0
|
||||
|
||||
if self.mode == "xformers":
|
||||
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
||||
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=None, p=dropout_rate)
|
||||
else:
|
||||
attn_output = memory_efficient_attention(query_states, key_states, value_states, attn_bias=LowerTriangularMask(), p=dropout_rate)
|
||||
else:
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=self.mode == "flash", enable_math=self.mode == "math", enable_mem_efficient=self.mode == "mem_efficient"):
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=dropout_rate)
|
||||
|
||||
attn_weights = None
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
"""
|
||||
return attn_output, None, past_key_value
|
|
@ -522,9 +522,6 @@ class Base(nn.Module):
|
|||
else:
|
||||
attention_backend = "eager"
|
||||
|
||||
if attention_backend == "xformers":
|
||||
attention_backend = "mem_efficient"
|
||||
|
||||
hf_attention = attention_backend
|
||||
|
||||
if attention_backend in ["xformers", "mem_efficient", "math", "flash", "cudnn", "flash_attn"]:
|
||||
|
@ -579,7 +576,7 @@ class Base(nn.Module):
|
|||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
if attention_backend in ["mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
if attention_backend in ["xformers", "mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
|
||||
|
||||
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
|
||||
|
@ -604,7 +601,7 @@ class Base(nn.Module):
|
|||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
if attention_backend in ["mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
if attention_backend in ["xformers", "mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend )
|
||||
else:
|
||||
self.model = MixtralModel(MixtralConfig(
|
||||
|
@ -626,7 +623,7 @@ class Base(nn.Module):
|
|||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
if attention_backend in ["mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
if attention_backend in ["xformers", "mem_efficient", "math", "flash", "cudnn", "auto", "flash_attn"]:
|
||||
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
|
||||
|
||||
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
|
||||
|
|
Loading…
Reference in New Issue
Block a user