integrated plot script, added tts-c task token to help the model be able to mix between normal VALL-E and VALL-E continuous
This commit is contained in:
parent
f7e942ec99
commit
4613781e23
|
@ -86,7 +86,9 @@ Two dataset formats are supported:
|
|||
|
||||
### Plotting Metrics
|
||||
|
||||
Included is a helper script to parse the training metrics. Simply invoke it with, for example: `python3 ./scripts/plot.py --log-dir ./training/valle/logs/1693675364 --out-dir ./data/ --xs=ar.engine_step --ys=ar.loss`
|
||||
Included is a helper script to parse the training metrics. Simply invoke it with, for example: `python3 -m vall_e.plot yaml="./training/valle/config.yaml"`
|
||||
|
||||
You can specify what X and Y labels you want to plot against by passing `--xs tokens_processed --ys loss stats.acc`
|
||||
|
||||
### Notices
|
||||
|
||||
|
|
113
scripts/plot.py
113
scripts/plot.py
|
@ -1,113 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def plot(paths, args):
|
||||
dfs = []
|
||||
|
||||
for path in paths:
|
||||
with open(path, "r") as f:
|
||||
text = f.read()
|
||||
|
||||
rows = []
|
||||
|
||||
pattern = r"(\{.+?\})\.\n"
|
||||
|
||||
for row in re.findall(pattern, text, re.DOTALL):
|
||||
try:
|
||||
row = json.loads(row)
|
||||
except Exception as e:
|
||||
continue
|
||||
|
||||
for x in args.xs:
|
||||
if x not in row:
|
||||
continue
|
||||
rows.append(row)
|
||||
break
|
||||
|
||||
df = pd.DataFrame(rows)
|
||||
|
||||
if "name" in df:
|
||||
df["name"] = df["name"].fillna("train")
|
||||
else:
|
||||
df["name"] = "train"
|
||||
|
||||
df["group"] = str(path.parents[args.group_level])
|
||||
df["group"] = df["group"] + "/" + df["name"]
|
||||
|
||||
dfs.append(df)
|
||||
|
||||
df = pd.concat(dfs)
|
||||
|
||||
if args.max_y is not None:
|
||||
for x in args.xs:
|
||||
df = df[df[x] < args.max_x]
|
||||
|
||||
for gtag, gdf in sorted(
|
||||
df.groupby("group"),
|
||||
key=lambda p: (p[0].split("/")[-1], p[0]),
|
||||
):
|
||||
for x in args.xs:
|
||||
for y in args.ys:
|
||||
gdf = gdf.sort_values(x)
|
||||
|
||||
if gdf[y].isna().all():
|
||||
continue
|
||||
|
||||
if args.max_y is not None:
|
||||
gdf = gdf[gdf[y] < args.max_y]
|
||||
|
||||
gdf[y] = gdf[y].ewm(10).mean()
|
||||
|
||||
gdf.plot(
|
||||
x=x,
|
||||
y=y,
|
||||
label=f"{y}",
|
||||
ax=plt.gca(),
|
||||
marker="x" if len(gdf) < 100 else None,
|
||||
alpha=0.7,
|
||||
)
|
||||
|
||||
plt.gca().legend(
|
||||
loc="center left",
|
||||
fancybox=True,
|
||||
shadow=True,
|
||||
bbox_to_anchor=(1.04, 0.5),
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--xs", nargs="+", default="ar.engine_step")
|
||||
parser.add_argument("--ys", nargs="+", default="ar.loss")
|
||||
parser.add_argument("--log-dir", default="logs", type=Path)
|
||||
parser.add_argument("--out-dir", default="logs", type=Path)
|
||||
parser.add_argument("--filename", default="log.txt")
|
||||
parser.add_argument("--max-x", type=float, default=float("inf"))
|
||||
parser.add_argument("--max-y", type=float, default=float("inf"))
|
||||
parser.add_argument("--group-level", default=1)
|
||||
parser.add_argument("--model-name", type=str, default="ar")
|
||||
parser.add_argument("--filter", default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
paths = args.log_dir.rglob(f"**/{args.filename}")
|
||||
|
||||
if args.filter:
|
||||
paths = filter(lambda p: re.match(".*" + args.filter + ".*", str(p)), paths)
|
||||
|
||||
plot(paths, args)
|
||||
|
||||
name = "-".join(args.ys)
|
||||
out_path = (args.out_dir / name).with_suffix(".png")
|
||||
plt.savefig(out_path, bbox_inches="tight")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -46,6 +46,7 @@ def get_task_symmap():
|
|||
"<mask>": start + 4,
|
||||
"<eoe>": start + 5,
|
||||
"<svc>": start + 6,
|
||||
"<tts-c>": start + 7,
|
||||
}
|
||||
return symmap
|
||||
|
||||
|
@ -58,6 +59,7 @@ def _get_quant_path(path):
|
|||
def _get_phone_path(path):
|
||||
return _replace_file_extension(path, ".phn.txt")
|
||||
|
||||
@cfg.diskcache()
|
||||
def _load_paths(dataset, type="training"):
|
||||
return { cfg.get_spkr( data_dir / "dummy" ): _load_paths_from_metadata( data_dir, type=type, validate=cfg.dataset.validate and type == "training" ) for data_dir in tqdm(dataset, desc=f"Parsing dataset: {type}") }
|
||||
|
||||
|
@ -318,12 +320,16 @@ class Dataset(_Dataset):
|
|||
if task == "tts-c" and trim_length * 2 >= resps.shape[0]:
|
||||
task = "tts"
|
||||
|
||||
task = "tts"
|
||||
|
||||
# VALL-E continuous
|
||||
# ignore if target utterance is shorter than prompt duration
|
||||
# to-do: actually do this for the AR only as I don't think the paper trained the NAR for this
|
||||
if task == "tts-c":
|
||||
proms = resps[:trim_length, :]
|
||||
resps = resps[trim_length:, :]
|
||||
|
||||
proms = torch.cat( [self.get_task_token(task), proms] )
|
||||
else:
|
||||
proms = self.sample_prompts(spkr_name, ignore=path) if random.random() < cfg.dataset.random_utterance else resps
|
||||
# noise suppression || speech removal
|
||||
|
@ -536,7 +542,6 @@ def _create_dataloader(dataset, training):
|
|||
sampler=sampler,
|
||||
)
|
||||
|
||||
@cfg.diskcache()
|
||||
def create_datasets():
|
||||
train_dataset = Dataset( training=True )
|
||||
val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False )
|
||||
|
|
112
vall_e/plot.py
Normal file
112
vall_e/plot.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
|
||||
from .config import cfg
|
||||
|
||||
def plot(paths, args):
|
||||
dfs = []
|
||||
|
||||
for path in paths:
|
||||
with open(path, "r") as f:
|
||||
text = f.read()
|
||||
|
||||
rows = []
|
||||
|
||||
pattern = r"(\{.+?\})\.\n"
|
||||
|
||||
for row in re.findall(pattern, text, re.DOTALL):
|
||||
try:
|
||||
row = json.loads(row)
|
||||
except Exception as e:
|
||||
continue
|
||||
|
||||
for model in args.models:
|
||||
if f'{model.name}.{args.xs}' not in row:
|
||||
continue
|
||||
rows.append(row)
|
||||
break
|
||||
|
||||
df = pd.DataFrame(rows)
|
||||
|
||||
if "name" in df:
|
||||
df["name"] = df["name"].fillna("train")
|
||||
else:
|
||||
df["name"] = "train"
|
||||
|
||||
df["group"] = str(path.parents[args.group_level])
|
||||
df["group"] = df["group"] + "/" + df["name"]
|
||||
|
||||
dfs.append(df)
|
||||
|
||||
df = pd.concat(dfs)
|
||||
|
||||
if args.max_y is not None:
|
||||
for model in args.models:
|
||||
df = df[df[f'{model.name}.{args.xs}'] < args.max_x]
|
||||
|
||||
for gtag, gdf in sorted(
|
||||
df.groupby("group"),
|
||||
key=lambda p: (p[0].split("/")[-1], p[0]),
|
||||
):
|
||||
for model in args.models:
|
||||
x = f'{model.name}.{args.xs}'
|
||||
for ys in args.ys:
|
||||
y = f'{model.name}.{ys}'
|
||||
|
||||
if gdf[y].isna().all():
|
||||
continue
|
||||
|
||||
if args.max_y is not None:
|
||||
gdf = gdf[gdf[y] < args.max_y]
|
||||
|
||||
gdf[y] = gdf[y].ewm(10).mean()
|
||||
|
||||
gdf.plot(
|
||||
x=x,
|
||||
y=y,
|
||||
label=f"{y}",
|
||||
ax=plt.gca(),
|
||||
marker="x" if len(gdf) < 100 else None,
|
||||
alpha=0.7,
|
||||
)
|
||||
|
||||
plt.gca().legend(
|
||||
loc="center left",
|
||||
fancybox=True,
|
||||
shadow=True,
|
||||
bbox_to_anchor=(1.04, 0.5),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--xs", default="engine_step")
|
||||
parser.add_argument("--ys", nargs="+", default="")
|
||||
parser.add_argument("--model", nargs="+", default="*")
|
||||
|
||||
parser.add_argument("--max-x", type=float, default=float("inf"))
|
||||
parser.add_argument("--max-y", type=float, default=float("inf"))
|
||||
|
||||
parser.add_argument("--filename", default="log.txt")
|
||||
parser.add_argument("--group-level", default=1)
|
||||
args = parser.parse_args()
|
||||
|
||||
path = cfg.relpath / "logs"
|
||||
paths = path.rglob(f"./*/{args.filename}")
|
||||
|
||||
args.models = [ model for model in cfg.models.get() if model.training and (args.model == "*" or model.name in args.model) ]
|
||||
|
||||
if args.ys == "":
|
||||
args.ys = ["loss"]
|
||||
|
||||
plot(paths, args)
|
||||
|
||||
out_path = cfg.relpath / "metrics.png"
|
||||
plt.savefig(out_path, bbox_inches="tight")
|
Loading…
Reference in New Issue
Block a user