actually use the passed-through sample rate from encode for DAC because it does its own resampling I guess
This commit is contained in:
parent
2e9e6e68f7
commit
4f5c9e518a
|
@ -27,17 +27,29 @@ for dataset_name in os.listdir(f'./{input_dataset}/'):
|
|||
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'):
|
||||
continue
|
||||
for filename in os.listdir(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}'):
|
||||
os.rename(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}', f'./{output_dataset}/{speaker_id}/{filename}')
|
||||
# os.rename(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}', f'./{output_dataset}/{speaker_id}/{filename}')
|
||||
|
||||
if ".original.txt" in filename:
|
||||
txts.append(Path(f'./{output_dataset}/{speaker_id}/{filename}'))
|
||||
if ".wav" in filename:
|
||||
wavs.append(Path(f'./{output_dataset}/{speaker_id}/{filename}'))
|
||||
inpath = Path(f'./{input_dataset}/{dataset_name}/{speaker_id}/{book_id}/{filename}')
|
||||
outpath = Path(f'./{output_dataset}/{speaker_id}/{filename}')
|
||||
|
||||
if ".original.txt" in filename and not _replace_file_extension(outpath, ".json").exists():
|
||||
txts.append([inpath, outpath])
|
||||
if ".wav" in filename and not _replace_file_extension(outpath, ".dac").exists():
|
||||
wavs.append([inpath, outpath])
|
||||
|
||||
for path in tqdm(txts, desc="Phonemizing..."):
|
||||
phones = valle_phonemize(open(path, "r", encoding="utf-8").read())
|
||||
open(_replace_file_extension(path, ".phn.txt"), "w", encoding="utf-8").write(" ".join(phones))
|
||||
for paths in tqdm(txts, desc="Phonemizing..."):
|
||||
text = open(paths[0], "r", encoding="utf-8").read()
|
||||
phones = valle_phonemize(text)
|
||||
data = {
|
||||
"text": text,
|
||||
"phonemes": phones,
|
||||
"language": "english",
|
||||
}
|
||||
open(_replace_file_extension(paths[1], ".json"), 'w', encoding='utf-8').write(json.dumps(data))
|
||||
#phones = valle_phonemize(open(paths[0], "r", encoding="utf-8").read())
|
||||
#open(_replace_file_extension(paths[1], ".phn.txt"), "w", encoding="utf-8").write(" ".join(phones))
|
||||
|
||||
for path in tqdm(wavs, desc="Quantizing..."):
|
||||
qnt = valle_quantize(path, device=device)
|
||||
torch.save(qnt.cpu(), _replace_file_extension(path, ".qnt.pt"))
|
||||
for paths in tqdm(wavs, desc="Quantizing..."):
|
||||
qnt = valle_quantize(paths[0], device=device)
|
||||
qnt.save(_replace_file_extension(paths[1], ".dac"))
|
||||
#torch.save(qnt.cpu(), _replace_file_extension(paths[1], ".qnt.pt"))
|
||||
|
|
62
scripts/process_old_dataaset.py
Normal file
62
scripts/process_old_dataaset.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import os
|
||||
import json
|
||||
import torch
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
from pathlib import Path
|
||||
from vall_e.emb.g2p import encode as valle_phonemize
|
||||
from vall_e.emb.qnt import encode_from_file as valle_quantize, _replace_file_extension
|
||||
|
||||
input_audio = "voices"
|
||||
input_metadata = "metadata"
|
||||
output_dataset = "training"
|
||||
|
||||
device = "cuda"
|
||||
|
||||
txts = []
|
||||
wavs = []
|
||||
|
||||
for dataset_name in os.listdir(f'./{input_audio}/'):
|
||||
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
|
||||
continue
|
||||
|
||||
for speaker_id in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/'), desc="Processing speaker"):
|
||||
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
|
||||
continue
|
||||
|
||||
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
|
||||
for filename in os.listdir(f'./{input_audio}/{dataset_name}/{speaker_id}/'):
|
||||
inpath = Path(f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}')
|
||||
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{filename}')
|
||||
|
||||
metadata_json = Path(f'./{input_metadata}/{dataset_name}/{speaker_id}/whisper.json')
|
||||
|
||||
if not metadata_json.exists() or not inpath.exist():
|
||||
print("Does not exist:", metadata_json, inpath)
|
||||
continue
|
||||
|
||||
if ".wav" not in filename and ".mp3" not in filename:
|
||||
continue
|
||||
|
||||
if not _replace_file_extension(outpath, ".json").exists():
|
||||
txts.push([ inpath, outpath ])
|
||||
|
||||
if not _replace_file_extension(outpath, ".dac").exists():
|
||||
wavs.push([ inpath, outpath ])
|
||||
|
||||
for paths in tqdm(txts, desc="Phonemizing..."):
|
||||
text = open(paths[0], "r", encoding="utf-8").read()
|
||||
phones = valle_phonemize(text)
|
||||
data = {
|
||||
"text": text,
|
||||
"phonemes": phones,
|
||||
"language": "english",
|
||||
}
|
||||
open(_replace_file_extension(paths[1], ".json"), 'w', encoding='utf-8').write(json.dumps(data))
|
||||
#phones = valle_phonemize(open(paths[0], "r", encoding="utf-8").read())
|
||||
#open(_replace_file_extension(paths[1], ".phn.txt"), "w", encoding="utf-8").write(" ".join(phones))
|
||||
|
||||
for paths in tqdm(wavs, desc="Quantizing..."):
|
||||
qnt = valle_quantize(paths[0], device=device)
|
||||
qnt.save(_replace_file_extension(paths[1], ".dac"))
|
||||
#torch.save(qnt.cpu(), _replace_file_extension(paths[1], ".qnt.pt"))
|
|
@ -484,7 +484,7 @@ class Inference:
|
|||
amp: bool = False
|
||||
|
||||
normalize: bool = False # do NOT enable this unless you know exactly what you're doing
|
||||
audio_backend: str = "vocos"
|
||||
audio_backend: str = "dac"
|
||||
|
||||
# legacy / backwards compat
|
||||
use_vocos: bool = True
|
||||
|
|
|
@ -836,27 +836,32 @@ def create_dataset_hdf5( skip_existing=True ):
|
|||
if "audio" in group:
|
||||
del group["audio"]
|
||||
group.create_dataset('audio', data=qnt.numpy(), compression='lzf')
|
||||
group.attrs['duration'] = qnt.shape[0] / 75
|
||||
metadata[id]["duration"] = qnt.shape[0] / 75
|
||||
group.attrs['duration'] = qnt.shape[0] # / 75
|
||||
metadata[id]["duration"] = qnt.shape[0] # / 75
|
||||
else:
|
||||
group.attrs['duration'] = 0
|
||||
metadata[id]["duration"] = 0
|
||||
|
||||
# text
|
||||
if texts:
|
||||
content = open(f'{root}/{name}/{id}.phn.txt', "r", encoding="utf-8") .read().split(" ")
|
||||
phones = [f"<s>"] + [ " " if not p else p for p in content ] + [f"</s>"]
|
||||
for s in set(phones):
|
||||
if s not in symmap:
|
||||
symmap[s] = len(symmap.keys())
|
||||
"""
|
||||
content = open(f'{root}/{name}/{id}.phn.txt', "r", encoding="utf-8") .read().split(" ")
|
||||
phones = [f"<s>"] + [ " " if not p else p for p in content ] + [f"</s>"]
|
||||
for s in set(phones):
|
||||
if s not in symmap:
|
||||
symmap[s] = len(symmap.keys())
|
||||
|
||||
phn = [ symmap[s] for s in phones ]
|
||||
phn = [ symmap[s] for s in phones ]
|
||||
|
||||
if "text" in group:
|
||||
del group["text"]
|
||||
group.create_dataset('text', data=phn, compression='lzf', chunks=True)
|
||||
group.attrs['phonemes'] = len(phn)
|
||||
metadata[id]["phones"] = len(phn)
|
||||
if "text" in group:
|
||||
del group["text"]
|
||||
|
||||
group.create_dataset('text', data=phn, compression='lzf', chunks=True)
|
||||
group.create_dataset('transcription', data=txt, compression='lzf', chunks=True)
|
||||
"""
|
||||
|
||||
group.attrs['phonemes'] = len(phn)
|
||||
metadata[id]["phones"] = len(phn)
|
||||
else:
|
||||
group.attrs['phonemes'] = 0
|
||||
metadata[id]["phones"] = 0
|
||||
|
|
|
@ -49,6 +49,8 @@ def encode(text: str, language="en-us", backend="auto") -> list[str]:
|
|||
tokens = phonemize( text, language=language, strip=True, preserve_punctuation=True, with_stress=True )
|
||||
|
||||
tokens = list(tokens[0])
|
||||
return tokens
|
||||
"""
|
||||
tokenized = " ".join( tokens )
|
||||
|
||||
merges = [ "\u02C8", "\u02CC", "\u02D0" ]
|
||||
|
@ -56,6 +58,7 @@ def encode(text: str, language="en-us", backend="auto") -> list[str]:
|
|||
tokenized = tokenized.replace( f' {merge}', merge )
|
||||
|
||||
return tokenized.split(" ")
|
||||
"""
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
|
|
|
@ -262,10 +262,10 @@ def _replace_file_extension(path, suffix):
|
|||
|
||||
|
||||
@torch.inference_mode()
|
||||
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.model.max_levels, return_metadata=False):
|
||||
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", levels=cfg.model.max_levels, return_metadata=True):
|
||||
if cfg.inference.audio_backend == "dac":
|
||||
model = _load_dac_model(device, levels=levels)
|
||||
signal = AudioSignal(wav, sample_rate=model.sample_rate)
|
||||
signal = AudioSignal(wav, sample_rate=sr)
|
||||
artifact = model.compress(signal, 5.0, verbose=False, n_quantizers=levels if isinstance(levels, int) else None)
|
||||
return artifact.codes if not return_metadata else artifact
|
||||
|
||||
|
|
|
@ -384,7 +384,7 @@ def example_usage():
|
|||
"""
|
||||
|
||||
model = AR_NAR(**kwargs).to(device)
|
||||
steps = 500
|
||||
steps = 750
|
||||
optimizer = ml.Prodigy(model.parameters(), lr=1.0)
|
||||
#optimizer = ml.Adagrad(model.parameters(), lr=1.0e-2)
|
||||
#optimizer = ml.AdamW(model.parameters(), lr=1.0e-4)
|
||||
|
@ -427,7 +427,7 @@ def example_usage():
|
|||
print(f"AR+NAR parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||||
|
||||
@torch.inference_mode()
|
||||
def sample( name, steps=600 ):
|
||||
def sample( name, steps=1000 ):
|
||||
if cfg.inference.audio_backend == "dac" and name == "init":
|
||||
return
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user