diff --git a/vall_e/__main__.py b/vall_e/__main__.py index 2709ace..c435bff 100755 --- a/vall_e/__main__.py +++ b/vall_e/__main__.py @@ -19,6 +19,7 @@ def main(): parser.add_argument("--ar-temp", type=float, default=1.0) parser.add_argument("--nar-temp", type=float, default=1.0) + parser.add_argument("--input-prompt-length", type=float, default=3.0) parser.add_argument("--top-p", type=float, default=1.0) parser.add_argument("--top-k", type=int, default=0) @@ -32,7 +33,7 @@ def main(): args = parser.parse_args() tts = TTS( config=args.yaml, ar_ckpt=args.ar_ckpt, nar_ckpt=args.nar_ckpt, device=args.device, dtype=args.dtype, amp=args.amp ) - tts.inference( text=args.text, references=args.references, out_path=args.out_path, max_ar_steps=args.max_ar_steps, ar_temp=args.ar_temp, nar_temp=args.nar_temp, top_p=args.top_p, top_k=args.top_k, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty ) + tts.inference( text=args.text, references=args.references, out_path=args.out_path, input_prompt_length=args.input_prompt_length, max_ar_steps=args.max_ar_steps, ar_temp=args.ar_temp, nar_temp=args.nar_temp, top_p=args.top_p, top_k=args.top_k, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty ) if __name__ == "__main__": main() diff --git a/vall_e/inference.py b/vall_e/inference.py index 293e705..49f2d76 100755 --- a/vall_e/inference.py +++ b/vall_e/inference.py @@ -121,7 +121,7 @@ class TTS(): phones = [ " " if not p else p for p in content ] return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ]) - def encode_audio( self, paths, should_trim=True ): + def encode_audio( self, paths, trim_length=0.0 ): # already a tensor, return it if isinstance( paths, Tensor ): return paths @@ -133,17 +133,17 @@ class TTS(): # merge inputs res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths]) - if should_trim: - res = trim( res, int( 75 * cfg.dataset.prompt_duration ) ) + if trim_length: + res = trim( res, int( 75 * trim_length ) ) return res @torch.inference_mode() - def inference( self, text, references, max_ar_steps=6 * 75, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ): + def inference( self, text, references, max_ar_steps=6 * 75, input_prompt_length=0.0, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ): if out_path is None: out_path = f"./data/{cfg.start_time}.wav" - prom = self.encode_audio( references ) + prom = self.encode_audio( references, trim_length=input_prompt_length ) phns = self.encode_text( text ) prom = to_device(prom, self.device).to(torch.int16) diff --git a/vall_e/webui.py b/vall_e/webui.py index 28777b1..a2b7b79 100644 --- a/vall_e/webui.py +++ b/vall_e/webui.py @@ -57,6 +57,7 @@ def do_inference( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("--text", type=str, default=kwargs["text"]) parser.add_argument("--references", type=str, default=kwargs["reference"]) + parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"]) parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*75)) parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"]) parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"]) @@ -75,6 +76,7 @@ def do_inference( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): references=[args.references.split(";")], out_path=tmp.name, max_ar_steps=args.max_ar_steps, + input_prompt_length=args.input_prompt_length, ar_temp=args.ar_temp, nar_temp=args.nar_temp, top_p=args.top_p, @@ -161,7 +163,9 @@ with ui: layout["inference"]["outputs"]["output"] = gr.Audio(label="Output") layout["inference"]["buttons"]["inference"] = gr.Button(value="Inference") with gr.Column(scale=7): - layout["inference"]["inputs"]["max-seconds"] = gr.Slider(value=6, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="This sets a limit of how many steps to perform in the AR pass.") + with gr.Row(): + layout["inference"]["inputs"]["max-seconds"] = gr.Slider(value=6, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="This sets a limit of how many steps to perform in the AR pass.") + layout["inference"]["inputs"]["input-prompt-length"] = gr.Slider(value=3.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Trim Length", info="Trims the input prompt down to X seconds. Set 0 to disable.") with gr.Row(): layout["inference"]["inputs"]["ar-temp"] = gr.Slider(value=0.95, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR.") layout["inference"]["inputs"]["nar-temp"] = gr.Slider(value=0.25, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR.")