added option to set the trim length for an input prompt

This commit is contained in:
mrq 2023-09-09 18:04:44 -05:00
parent d10053d11f
commit 4f61f5c889
3 changed files with 12 additions and 7 deletions

View File

@ -19,6 +19,7 @@ def main():
parser.add_argument("--ar-temp", type=float, default=1.0) parser.add_argument("--ar-temp", type=float, default=1.0)
parser.add_argument("--nar-temp", type=float, default=1.0) parser.add_argument("--nar-temp", type=float, default=1.0)
parser.add_argument("--input-prompt-length", type=float, default=3.0)
parser.add_argument("--top-p", type=float, default=1.0) parser.add_argument("--top-p", type=float, default=1.0)
parser.add_argument("--top-k", type=int, default=0) parser.add_argument("--top-k", type=int, default=0)
@ -32,7 +33,7 @@ def main():
args = parser.parse_args() args = parser.parse_args()
tts = TTS( config=args.yaml, ar_ckpt=args.ar_ckpt, nar_ckpt=args.nar_ckpt, device=args.device, dtype=args.dtype, amp=args.amp ) tts = TTS( config=args.yaml, ar_ckpt=args.ar_ckpt, nar_ckpt=args.nar_ckpt, device=args.device, dtype=args.dtype, amp=args.amp )
tts.inference( text=args.text, references=args.references, out_path=args.out_path, max_ar_steps=args.max_ar_steps, ar_temp=args.ar_temp, nar_temp=args.nar_temp, top_p=args.top_p, top_k=args.top_k, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty ) tts.inference( text=args.text, references=args.references, out_path=args.out_path, input_prompt_length=args.input_prompt_length, max_ar_steps=args.max_ar_steps, ar_temp=args.ar_temp, nar_temp=args.nar_temp, top_p=args.top_p, top_k=args.top_k, repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, length_penalty=args.length_penalty )
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -121,7 +121,7 @@ class TTS():
phones = [ " " if not p else p for p in content ] phones = [ " " if not p else p for p in content ]
return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ]) return torch.tensor([ 1 ] + [*map(self.symmap.get, phones)] + [ 2 ])
def encode_audio( self, paths, should_trim=True ): def encode_audio( self, paths, trim_length=0.0 ):
# already a tensor, return it # already a tensor, return it
if isinstance( paths, Tensor ): if isinstance( paths, Tensor ):
return paths return paths
@ -133,17 +133,17 @@ class TTS():
# merge inputs # merge inputs
res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths]) res = torch.cat([qnt.encode_from_file(path)[0][:, :].t().to(torch.int16) for path in paths])
if should_trim: if trim_length:
res = trim( res, int( 75 * cfg.dataset.prompt_duration ) ) res = trim( res, int( 75 * trim_length ) )
return res return res
@torch.inference_mode() @torch.inference_mode()
def inference( self, text, references, max_ar_steps=6 * 75, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ): def inference( self, text, references, max_ar_steps=6 * 75, input_prompt_length=0.0, ar_temp=0.95, nar_temp=0.5, top_p=1.0, top_k=0, repetition_penalty=1.0, repetition_penalty_decay=0.0, length_penalty=0.0, out_path=None ):
if out_path is None: if out_path is None:
out_path = f"./data/{cfg.start_time}.wav" out_path = f"./data/{cfg.start_time}.wav"
prom = self.encode_audio( references ) prom = self.encode_audio( references, trim_length=input_prompt_length )
phns = self.encode_text( text ) phns = self.encode_text( text )
prom = to_device(prom, self.device).to(torch.int16) prom = to_device(prom, self.device).to(torch.int16)

View File

@ -57,6 +57,7 @@ def do_inference( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
parser = argparse.ArgumentParser(allow_abbrev=False) parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument("--text", type=str, default=kwargs["text"]) parser.add_argument("--text", type=str, default=kwargs["text"])
parser.add_argument("--references", type=str, default=kwargs["reference"]) parser.add_argument("--references", type=str, default=kwargs["reference"])
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"])
parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*75)) parser.add_argument("--max-ar-steps", type=int, default=int(kwargs["max-seconds"]*75))
parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"]) parser.add_argument("--ar-temp", type=float, default=kwargs["ar-temp"])
parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"]) parser.add_argument("--nar-temp", type=float, default=kwargs["nar-temp"])
@ -75,6 +76,7 @@ def do_inference( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
references=[args.references.split(";")], references=[args.references.split(";")],
out_path=tmp.name, out_path=tmp.name,
max_ar_steps=args.max_ar_steps, max_ar_steps=args.max_ar_steps,
input_prompt_length=args.input_prompt_length,
ar_temp=args.ar_temp, ar_temp=args.ar_temp,
nar_temp=args.nar_temp, nar_temp=args.nar_temp,
top_p=args.top_p, top_p=args.top_p,
@ -161,7 +163,9 @@ with ui:
layout["inference"]["outputs"]["output"] = gr.Audio(label="Output") layout["inference"]["outputs"]["output"] = gr.Audio(label="Output")
layout["inference"]["buttons"]["inference"] = gr.Button(value="Inference") layout["inference"]["buttons"]["inference"] = gr.Button(value="Inference")
with gr.Column(scale=7): with gr.Column(scale=7):
with gr.Row():
layout["inference"]["inputs"]["max-seconds"] = gr.Slider(value=6, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="This sets a limit of how many steps to perform in the AR pass.") layout["inference"]["inputs"]["max-seconds"] = gr.Slider(value=6, minimum=1, maximum=32, step=0.1, label="Maximum Seconds", info="This sets a limit of how many steps to perform in the AR pass.")
layout["inference"]["inputs"]["input-prompt-length"] = gr.Slider(value=3.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Trim Length", info="Trims the input prompt down to X seconds. Set 0 to disable.")
with gr.Row(): with gr.Row():
layout["inference"]["inputs"]["ar-temp"] = gr.Slider(value=0.95, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR.") layout["inference"]["inputs"]["ar-temp"] = gr.Slider(value=0.95, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR.")
layout["inference"]["inputs"]["nar-temp"] = gr.Slider(value=0.25, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR.") layout["inference"]["inputs"]["nar-temp"] = gr.Slider(value=0.25, minimum=0.0, maximum=1.2, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR.")