Update docs
This commit is contained in:
parent
c3bacebfab
commit
54acc621d4
54
README.md
54
README.md
|
@ -1,13 +1,55 @@
|
|||
# VALL-E
|
||||
|
||||
An unofficial (toy) implementation of VALL-E, based on the [encodec](https://github.com/facebookresearch/encodec) tokenizer.
|
||||
An unofficial (toy) implementation of [VALL-E](https://valle-demo.github.io/), based on the [encodec](https://github.com/facebookresearch/encodec) tokenizer.
|
||||
|
||||
[](https://www.buymeacoffee.com/enhuiz)
|
||||
|
||||
## Requirements
|
||||
|
||||
### 1. Clone the project
|
||||
|
||||
```
|
||||
git clone --recurse-submodules https://github.com/enhuiz/vall-e.git
|
||||
```
|
||||
|
||||
### 2. Install requirements
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Note: You may need to install additional requirements as you run the script.
|
||||
|
||||
## Data Preparation
|
||||
|
||||
1. Put your data into a folder, e.g. `data/your_data`. Audio files should be named with the suffix `.wav` and text files with `.normalized.txt`.
|
||||
|
||||
2. Quantize the data:
|
||||
|
||||
```
|
||||
python -m vall_e.emb.qnt data/your_data
|
||||
```
|
||||
|
||||
3. Generate phonemes based on the text:
|
||||
|
||||
```
|
||||
python -m vall_e.emb.g2p data/your_data
|
||||
```
|
||||
|
||||
4. Customize your configuration by creating `config/your_data/ar.yml` and `config/your_data/nar.yml`.
|
||||
|
||||
- Refer to the example configs in `config/test` and `vall_e/config.py` for details.
|
||||
|
||||
5. Train the AR or NAR model using the following scripts:
|
||||
|
||||
```
|
||||
python -m vall_e.train yaml=config/your_data/ar_or_nar.yml
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
- [x] AR model for the first quantizer.
|
||||
- [x] Audio decoding from tokens.
|
||||
- [x] NAR model for the rest quantizers.
|
||||
- [x] Trainers for both models.
|
||||
- [ ] Pre-trained checkpoint.
|
||||
- [x] AR model for the first quantizer
|
||||
- [x] Audio decoding from tokens
|
||||
- [x] NAR model for the rest quantizers
|
||||
- [x] Trainers for both models
|
||||
- [ ] Pre-trained checkpoint and demos on LibriTTS
|
||||
|
|
16
requirements.txt
Normal file
16
requirements.txt
Normal file
|
@ -0,0 +1,16 @@
|
|||
coloredlogs==15.0.1
|
||||
deepspeed==0.7.7
|
||||
diskcache==5.4.0
|
||||
einops==0.6.0
|
||||
encodec==0.1.1
|
||||
g2p_en==2.1.0
|
||||
humanize==4.4.0
|
||||
matplotlib==3.6.0
|
||||
numpy==1.23.3
|
||||
omegaconf==2.2.3
|
||||
openTSNE==0.6.2
|
||||
pandas==1.5.0
|
||||
soundfile==0.11.0
|
||||
torch==1.13.0+cu116
|
||||
torchaudio==0.13.0+cu116
|
||||
tqdm==4.64.1
|
Loading…
Reference in New Issue
Block a user