metadata only path (might drop HDF5 since its giving file sizes twice as large as my actual unpacked dataset)

This commit is contained in:
mrq 2024-04-28 23:03:09 -05:00
parent caad7ee3c9
commit 57810e4ba4

View File

@ -753,56 +753,98 @@ def create_train_val_dataloader():
return train_dl, subtrain_dl, val_dl
# parse dataset into better to sample metadata
def create_dataset_metadata():
# need to fix
if True:
return
cfg.dataset.validate = False
cfg.dataset.use_hdf5 = False
paths_by_spkr_name = {}
paths_by_spkr_name |= _load_paths(cfg.dataset.training, "training")
paths_by_spkr_name |= _load_paths(cfg.dataset.validation, "validation")
paths_by_spkr_name |= _load_paths(cfg.dataset.noise, "noise")
paths = list(itertools.chain.from_iterable(paths_by_spkr_name.values()))
metadata = {}
for path in tqdm(paths, desc="Parsing paths"):
if isinstance(path, str):
print("str:", path)
path = Path(path)
speaker = cfg.get_spkr(path)
if speaker not in metadata:
metadata[speaker] = {}
if cfg.dataset.use_hdf5:
phones = cfg.hdf5[_get_hdf5_path(path)].attrs['phonemes']
duration = cfg.hdf5[_get_hdf5_path(path)].attrs['duration']
else:
phns_path = _get_phone_path(path)
qnts_path = _get_quant_path(path)
phones = len(_get_phones(phns_path)) if phns_path.exists() else 0
duration = _load_quants(qnts_path).shape[0] / 75 if qnts_path.exists() else 0
metadata[speaker][path.name.split(".")[0]] = {
"phones": phones,
"duration": duration
}
for speaker, paths in tqdm(paths_by_spkr_name.items(), desc="Writing metadata"):
if len(paths) == 0:
continue
with open(paths[0].parent / "metadata.json", "w", encoding="utf-8") as f:
f.write( json.dumps( metadata[speaker] ) )
def create_dataset_metadata( skip_existing=False ):
symmap = get_phone_symmap()
with open(cfg.relpath / "metadata.json", "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
root = str(cfg.data_dir)
metadata_root = str(cfg.metadata_dir)
cfg.metadata_dir.mkdir(parents=True, exist_ok=True)
def add( dir, type="training", audios=True, texts=True ):
name = str(dir)
name = name.replace(root, "")
metadata_path = Path(f"{metadata_root}/{name}.json")
metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read())
if not os.path.isdir(f'{root}/{name}/'):
return
# tqdm.write(f'{root}/{name}')
files = os.listdir(f'{root}/{name}/')
# grab IDs for every file
ids = { file.replace(_get_quant_extension(), "").replace(_get_phone_extension(), "") for file in files }
for id in tqdm(ids, desc=f"Processing {name}"):
try:
audio_exists = os.path.exists(f'{root}/{name}/{id}{_get_quant_extension()}') if audios else True
text_exists = os.path.exists(f'{root}/{name}/{id}{_get_phone_extension()}') if texts else True
if not audio_exists or not text_exists:
continue
key = f'{type}/{name}/{id}'
if skip_existing and key in metadata:
continue
if id not in metadata:
metadata[id] = {}
# audio
if audios:
if _get_quant_extension() == ".dac":
dac = np.load(f'{root}/{name}/{id}{_get_quant_extension()}', allow_pickle=True)[()]
qnt = torch.from_numpy(dac["codes"].astype(int))[0].t().to(dtype=torch.int16)
duration = dac["metadata"]["original_length"] / dac["metadata"]["sample_rate"]
metadata[id]["metadata"] = {
"original_length": dac["metadata"]["original_length"],
"sample_rate": dac["metadata"]["sample_rate"],
}
else:
qnt = torch.load(f'{root}/{name}/{id}{_get_quant_extension()}')[0].t()
duration = qnt.shape[0] / 75
metadata[id]["duration"] = duration
else:
metadata[id]["duration"] = 0
# text
if texts:
if _get_phone_extension() == ".json":
json_metadata = json.loads(open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read())
content = json_metadata["phonemes"]
txt = json_metadata["text"]
else:
content = open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read().split(" ")
txt = ""
phn = cfg.tokenizer.encode("".join(content))
phn = np.array(phn).astype(np.uint8)
metadata[id]["phones"] = len(phn)
metadata[id]["transcription"] = txt
except Exception as e:
raise e
#pass
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
# training
for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"):
add( data_dir, type="training" )
# validation
for data_dir in tqdm(sorted(cfg.dataset.validation), desc='Processing Validation'):
add( data_dir, type="validation" )
# noise
for data_dir in tqdm(sorted(cfg.dataset.noise), desc='Processing Noise'):
add( data_dir, type="noise", texts=False )
# parse yaml to create an hdf5 file
def create_dataset_hdf5( skip_existing=True ):