lol
This commit is contained in:
parent
6f1ee0c6fa
commit
6468e5d124
|
@ -884,18 +884,29 @@ class Config(BaseConfig):
|
||||||
if not isinstance( path, Path ):
|
if not isinstance( path, Path ):
|
||||||
path = Path(path)
|
path = Path(path)
|
||||||
|
|
||||||
# do not glob
|
# do not glob if no wildcard to glob
|
||||||
if "*" not in str(path):
|
if "*" not in str(path):
|
||||||
return [ path ]
|
return [ path ]
|
||||||
|
|
||||||
metadata_parent = cfg.metadata_dir / path.parent
|
|
||||||
data_parent = cfg.data_dir / path.parent
|
|
||||||
|
|
||||||
if metadata_parent.exists():
|
|
||||||
return [ path.parent / child.stem for child in Path(metadata_parent).glob(path.name) ]
|
|
||||||
|
|
||||||
|
dir = path.parent
|
||||||
|
name = path.name
|
||||||
|
|
||||||
|
metadata_parent = cfg.metadata_dir / dir
|
||||||
|
data_parent = cfg.data_dir / dir
|
||||||
|
|
||||||
|
res = []
|
||||||
|
# grab any paths from metadata folder (since this is for HDF5)
|
||||||
|
if metadata_parent.exists():
|
||||||
|
res = [ path.parent / child.stem for child in Path(metadata_parent).glob(name) ]
|
||||||
|
# return if found anything
|
||||||
|
if res:
|
||||||
|
return res
|
||||||
|
# grab anything from the data folder (if no metadata exists)
|
||||||
if data_parent.exists():
|
if data_parent.exists():
|
||||||
return [ path.parent / child.name for child in Path(data_parent).glob(path.name) ]
|
res = [ path.parent / child.name for child in Path(data_parent).glob(name) ]
|
||||||
|
# return if found anything
|
||||||
|
if res:
|
||||||
|
return res
|
||||||
|
|
||||||
# return an empty list
|
# return an empty list
|
||||||
if self.silent_errors:
|
if self.silent_errors:
|
||||||
|
|
|
@ -633,8 +633,6 @@ def _load_paths_from_metadata(group_name, type="training", validate=False):
|
||||||
phones = entry['phones'] if "phones" in entry else 0
|
phones = entry['phones'] if "phones" in entry else 0
|
||||||
duration = entry['duration'] if "duration" in entry else 0
|
duration = entry['duration'] if "duration" in entry else 0
|
||||||
|
|
||||||
#print( id, duration )
|
|
||||||
|
|
||||||
# add to duration bucket
|
# add to duration bucket
|
||||||
k = key(id, entry)
|
k = key(id, entry)
|
||||||
if type not in _durations_map:
|
if type not in _durations_map:
|
||||||
|
@ -1079,7 +1077,7 @@ class Dataset(_Dataset):
|
||||||
def sample_prompts(self, spkr_name, reference, should_trim=True):
|
def sample_prompts(self, spkr_name, reference, should_trim=True):
|
||||||
# return no prompt if explicitly requested for who knows why
|
# return no prompt if explicitly requested for who knows why
|
||||||
# or if there's no other speakers to sample from (Emilia has a lot of singleton speakers, but I still want to make use of them)
|
# or if there's no other speakers to sample from (Emilia has a lot of singleton speakers, but I still want to make use of them)
|
||||||
if not cfg.dataset.prompt_duration_range or cfg.dataset.prompt_duration_range[-1] == 0 or len(self.paths_by_spkr_name[key]) <= 1:
|
if not cfg.dataset.prompt_duration_range or cfg.dataset.prompt_duration_range[-1] == 0 or len(self.paths_by_spkr_name[spkr_name]) <= 1:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
prom_list = []
|
prom_list = []
|
||||||
|
@ -1686,7 +1684,11 @@ def create_dataset_hdf5( skip_existing=True ):
|
||||||
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
|
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
|
||||||
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
|
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
metadata = json_read(metadata_path, default={})
|
try:
|
||||||
|
metadata = json_read(metadata_path, default={})
|
||||||
|
except Exception as e:
|
||||||
|
print(metadata_path, e)
|
||||||
|
return
|
||||||
|
|
||||||
if not os.path.isdir(f'{root}/{name}/'):
|
if not os.path.isdir(f'{root}/{name}/'):
|
||||||
return
|
return
|
||||||
|
|
|
@ -302,8 +302,8 @@ def main():
|
||||||
num = args.dataset_samples if args.dataset_samples else length
|
num = args.dataset_samples if args.dataset_samples else length
|
||||||
|
|
||||||
for i in trange( num, desc="Sampling dataset for samples" ):
|
for i in trange( num, desc="Sampling dataset for samples" ):
|
||||||
index = i if not cfg.dataset.sample_shuffle else random.randint( 0, len( dataloader.dataset ) )
|
index = i if not cfg.dataset.sample_shuffle else random.randint( 0, len( dataloader.dataset ) - 1 )
|
||||||
batch = dataloader.dataset[i]
|
batch = dataloader.dataset[index]
|
||||||
|
|
||||||
if args.dataset_dir_name_prefix:
|
if args.dataset_dir_name_prefix:
|
||||||
dir = args.demo_dir / args.dataset_dir_name / f'{args.dataset_dir_name_prefix}_{i}'
|
dir = args.demo_dir / args.dataset_dir_name / f'{args.dataset_dir_name_prefix}_{i}'
|
||||||
|
|
|
@ -961,6 +961,11 @@ def example_usage():
|
||||||
learning_rate = 1.0e-4
|
learning_rate = 1.0e-4
|
||||||
|
|
||||||
optimizer = ml.SGD
|
optimizer = ml.SGD
|
||||||
|
elif optimizer == "apollo":
|
||||||
|
if learning_rate is None:
|
||||||
|
learning_rate = 0.01
|
||||||
|
|
||||||
|
optimizer = ml.Apollo
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
raise ValueError(f"Unrecognized optimizer: {optimizer}")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user