repeat extend the prom to fill the initial tokens for nar-len (it somewhat works, the model just needs to train more)
This commit is contained in:
parent
a3bc26f7ec
commit
77ff23e319
|
@ -356,6 +356,7 @@ class TTS():
|
|||
)
|
||||
elif model_len is not None:
|
||||
len_list = model_len( text_list=[phns], proms_list=[prom], max_steps=10, disable_tqdm=not tqdm ) # don't need more than that
|
||||
len_list = [ min(l, max_ar_steps) for l in len_list ]
|
||||
resps_list = model_nar( text_list=[phns], proms_list=[prom], len_list=len_list,
|
||||
max_levels=max_nar_levels,
|
||||
sampling_temperature=nar_temp,
|
||||
|
|
|
@ -18,7 +18,8 @@ from einops import rearrange
|
|||
from torch import Tensor
|
||||
from tqdm import trange
|
||||
|
||||
from ..emb.qnt import trim
|
||||
from ..emb.qnt import trim, repeat_extend_audio
|
||||
|
||||
import logging
|
||||
|
||||
def clamp(n, lo, hi):
|
||||
|
@ -216,7 +217,8 @@ class NAR(Base):
|
|||
|
||||
# fill with mock tokens
|
||||
# to-do: repeat with the input prompt, as per training
|
||||
prev_list = [ torch.tensor([ self.stop_token for _ in range(resp_len) ], device=device, dtype=torch.int16) for resp_len in len_list ]
|
||||
#prev_list = [ torch.tensor([ self.stop_token for _ in range(resp_len) ], device=device, dtype=torch.int16) for resp_len in len_list ]
|
||||
prev_list = [ repeat_extend_audio( prom, resp_len ) for resp_len, prom in zip(len_list, proms_list) ]
|
||||
|
||||
# to-do: figure out why this fails when I copy some things from ar_nar
|
||||
for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
|
||||
|
@ -251,7 +253,8 @@ class NAR(Base):
|
|||
prev_list=prev_list,
|
||||
quant_levels=quant_levels,
|
||||
|
||||
temperature=sampling_temperature,
|
||||
#temperature=sampling_temperature,
|
||||
temperature=1.0 if n == 0 else sampling_temperature,
|
||||
min_temperature=sampling_min_temperature,
|
||||
top_p=sampling_top_p,
|
||||
top_k=sampling_top_k,
|
||||
|
|
Loading…
Reference in New Issue
Block a user