fix vall_e.data --action=hdf5 actually transcribing because past me completely forgot it tried to already put the transcribe/process dataset scripts inside the module before

This commit is contained in:
mrq 2024-08-08 07:51:42 -05:00
parent 949339a3fa
commit 79a6781c9e
2 changed files with 2 additions and 109 deletions

View File

@ -1498,111 +1498,6 @@ def create_dataset_hdf5( skip_existing=True ):
hf.create_dataset('symmap', data=json.dumps(symmap))
hf.close()
def transcribe_dataset():
import os
import json
import torch
import torchaudio
import whisperx
from tqdm.auto import tqdm
from pathlib import Path
# to-do: use argparser
batch_size = 16
device = "cuda"
dtype = "float16"
model_name = "large-v3"
input_audio = "voices"
output_dataset = "training/metadata"
skip_existing = True
diarize = False
#
model = whisperx.load_model(model_name, device, compute_type=dtype)
align_model, align_model_metadata, align_model_language = (None, None, None)
if diarize:
diarize_model = whisperx.DiarizationPipeline(device=device)
else:
diarize_model = None
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
for dataset_name in os.listdir(f'./{input_audio}/'):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
continue
for speaker_id in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/'), desc="Processing speaker"):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
continue
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/whisper.json')
if outpath.exists():
metadata = json.loads(open(outpath, 'r', encoding='utf-8').read())
else:
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
metadata = {}
for filename in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/{speaker_id}/'), desc=f"Processing speaker: {speaker_id}"):
if skip_existing and filename in metadata:
continue
if ".json" in filename:
continue
inpath = f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}'
if os.path.isdir(inpath):
continue
metadata[filename] = {
"segments": [],
"language": "",
"text": "",
"start": 0,
"end": 0,
}
audio = whisperx.load_audio(inpath)
result = model.transcribe(audio, batch_size=batch_size)
language = result["language"]
if language[:2] not in ["ja"]:
language = "en"
if align_model_language != language:
tqdm.write(f'Loading language: {language}')
align_model, align_model_metadata = whisperx.load_align_model(language_code=language, device=device)
align_model_language = language
result = whisperx.align(result["segments"], align_model, align_model_metadata, audio, device, return_char_alignments=False)
metadata[filename]["segments"] = result["segments"]
metadata[filename]["language"] = language
if diarize_model is not None:
diarize_segments = diarize_model(audio)
result = whisperx.assign_word_speakers(diarize_segments, result)
text = []
start = 0
end = 0
for segment in result["segments"]:
text.append( segment["text"] )
start = min( start, segment["start"] )
end = max( end, segment["end"] )
metadata[filename]["text"] = " ".join(text).strip()
metadata[filename]["start"] = start
metadata[filename]["end"] = end
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
if __name__ == "__main__":
import argparse
@ -1622,8 +1517,6 @@ if __name__ == "__main__":
_logger = LoggerOveride()
if args.action == "hdf5":
transcribe_dataset()
elif args.action == "hdf5":
create_dataset_hdf5()
elif args.action == "list-dataset":
dataset = []

View File

@ -100,7 +100,7 @@ def process(
amp=False,
):
# prepare from args
cfg.set_audio_backend(args.audio_backend)
cfg.set_audio_backend(audio_backend)
audio_extension = cfg.audio_backend_extension
cfg.inference.weight_dtype = dtype # "bfloat16"
@ -117,7 +117,7 @@ def process(
only_groups = [] # only process these groups
only_speakers = [] # only process these speakers
always_slice_groups = [] # always slice from this group
always_slice_groups = ["Audiobooks", "LibriVox"] # always slice from this group
audio_only = ["Noise"] # special pathway for processing audio only (without a transcription)
missing = {