updated process_datasets.py, added argparsing so I can mostly stop manually editing things, and some other cleanup

This commit is contained in:
mrq 2024-08-05 15:59:25 -05:00
parent debcc93e7e
commit 7cdfa3dc0c
2 changed files with 233 additions and 180 deletions

View File

@ -1,61 +1,99 @@
import os
import json
import argparse
import torch
import torchaudio
import numpy as np
from tqdm.auto import tqdm
from pathlib import Path
from vall_e.config import cfg
# things that could be args
cfg.sample_rate = 24_000
cfg.audio_backend = "encodec"
"""
cfg.inference.weight_dtype = "bfloat16"
cfg.inference.dtype = torch.bfloat16
cfg.inference.amp = True
"""
from vall_e.emb.g2p import encode as valle_phonemize
from vall_e.emb.qnt import encode as valle_quantize, _replace_file_extension
input_audio = "voices"
input_metadata = "metadata"
output_dataset = f"training-{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}"
device = "cuda"
audio_extension = ".enc"
if cfg.audio_backend == "dac":
audio_extension = ".dac"
elif cfg.audio_backend == "audiodec":
audio_extension = ".dec"
slice = "auto"
missing = {
"transcription": [],
"audio": []
}
dataset = []
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
print("Is not dir:", f'./{input_audio}/{dataset_name}/')
def process_items( items, stride=0 ):
items = sorted( items )
return items if stride == 0 else [ item for i, item in enumerate( items ) if i % stride == 0 ]
def process_dataset( args ):
# encodec / vocos
if args.audio_backend in ["encodec", "vocos"]:
audio_extension = ".enc"
cfg.sample_rate = 24_000
cfg.model.resp_levels = 8
elif args.audio_backend == "dac":
audio_extension = ".dac"
cfg.sample_rate = 44_100
cfg.model.resp_levels = 9
elif cfg.audio_backend == "audiodec":
sample_rate = 48_000
audio_extension = ".dec"
cfg.model.resp_levels = 8 # ?
else:
raise Exception(f"Unknown audio backend: {args.audio_backend}")
# prepare from args
cfg.audio_backend = args.audio_backend # "encodec"
cfg.inference.weight_dtype = args.dtype # "bfloat16"
cfg.inference.amp = args.amp # False
# import after because we've overriden the config above
from vall_e.emb.g2p import encode as valle_phonemize
from vall_e.emb.qnt import encode as valle_quantize, _replace_file_extension
input_audio = args.input_audio # "voice""
input_metadata = args.input_metadata # "metadata"
output_group = f"{args.output_group}-{'2' if cfg.sample_rate == 24_000 else '4'}{'8' if cfg.sample_rate == 48_000 else '4'}KHz-{cfg.audio_backend}" # "training"
device = args.device # "cuda"
raise_exceptions = args.raise_exceptions # False
stride = args.stride # 0
slice = args.slice # "auto"
language_map = {} # k = group, v = language
ignore_groups = [] # skip these groups
ignore_speakers = [] # skip these speakers
only_groups = [] # only process these groups
only_speakers = [] # only process these speakers
always_slice_groups = [] # always slice from this group
missing = {
"transcription": [],
"audio": []
}
dataset = []
for group_name in sorted(os.listdir(f'./{input_audio}/')):
if not os.path.isdir(f'./{input_audio}/{group_name}/'):
print("Is not dir:", f'./{input_audio}/{group_name}/')
continue
for speaker_id in tqdm(sorted(os.listdir(f'./{input_audio}/{dataset_name}/')), desc=f"Processing speaker in {dataset_name}"):
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
print("Is not dir:", f'./{input_audio}/{dataset_name}/{speaker_id}')
if group_name in ignore_groups:
continue
if only_groups and group_name not in only_groups:
continue
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
for speaker_id in tqdm(process_items(os.listdir(f'./{input_audio}/{group_name}/'), stride=stride), desc=f"Processing speaker in {group_name}"):
if not os.path.isdir(f'./{input_audio}/{group_name}/{speaker_id}'):
print("Is not dir:", f'./{input_audio}/{group_name}/{speaker_id}')
continue
if speaker_id in ignore_speakers:
continue
if only_speakers and speaker_id not in only_speakers:
continue
os.makedirs(f'./{output_group}/{group_name}/{speaker_id}/', exist_ok=True)
if speaker_id == "Noise":
for filename in sorted(os.listdir(f'./{input_audio}/{dataset_name}/{speaker_id}/')):
inpath = Path(f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}')
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{filename}')
for filename in sorted(os.listdir(f'./{input_audio}/{group_name}/{speaker_id}/')):
inpath = Path(f'./{input_audio}/{group_name}/{speaker_id}/{filename}')
outpath = Path(f'./{output_group}/{group_name}/{speaker_id}/{filename}')
if _replace_file_extension(outpath, audio_extension).exists():
continue
@ -88,7 +126,7 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
continue
metadata_path = Path(f'./{input_metadata}/{dataset_name}/{speaker_id}/whisper.json')
metadata_path = Path(f'./{input_metadata}/{group_name}/{speaker_id}/whisper.json')
if not metadata_path.exists():
missing["transcription"].append(str(metadata_path))
continue
@ -99,16 +137,16 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
missing["transcription"].append(str(metadata_path))
continue
if f'{dataset_name}/{speaker_id}' not in dataset:
dataset.append(f'{dataset_name}/{speaker_id}')
if f'{group_name}/{speaker_id}' not in dataset:
dataset.append(f'{group_name}/{speaker_id}')
txts = []
wavs = []
use_slices = slice == True or (slice == "auto" and len(metadata.keys()) == 1) or dataset_name in ["LibriVox", "Audiobooks"]
use_slices = slice == True or (slice == "auto" and len(metadata.keys()) == 1) or group_name in always_slice_groups
for filename in sorted(metadata.keys()):
inpath = Path(f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}')
inpath = Path(f'./{input_audio}/{group_name}/{speaker_id}/{filename}')
if not inpath.exists():
missing["audio"].append(str(inpath))
continue
@ -117,10 +155,10 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
fname = filename.replace(f'.{extension}', "")
waveform, sample_rate = None, None
language = metadata[filename]["language"] if "language" in metadata[filename] else "en"
language = language_map[group_name] if group_name in language_map else (metadata[filename]["language"] if "language" in metadata[filename] else "en")
if len(metadata[filename]["segments"]) == 0 or not use_slices:
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{fname}.{extension}')
outpath = Path(f'./{output_group}/{group_name}/{speaker_id}/{fname}.{extension}')
text = metadata[filename]["text"]
if len(text) == 0:
@ -147,7 +185,7 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
id = pad(i, 4)
i = i + 1
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/{fname}_{id}.{extension}')
outpath = Path(f'./{output_group}/{group_name}/{speaker_id}/{fname}_{id}.{extension}')
text = segment["text"]
if len(text) == 0:
@ -185,9 +223,10 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
try:
outpath, text, language, waveform, sample_rate = job
phones = valle_phonemize( text, language=language )
phones = valle_phonemize(text, language=language)
qnt = valle_quantize(waveform, sr=sample_rate, device=device)
if cfg.audio_backend == "dac":
np.save(open(_replace_file_extension(outpath, audio_extension), "wb"), {
"codes": qnt.codes.cpu().numpy().astype(np.uint16),
@ -220,7 +259,30 @@ for dataset_name in sorted(os.listdir(f'./{input_audio}/')):
})
except Exception as e:
print(f"Failed to quantize: {outpath}:", e)
if raise_exceptions:
raise e
continue
open("./missing.json", 'w', encoding='utf-8').write(json.dumps(missing))
open("./dataset_list.json", 'w', encoding='utf-8').write(json.dumps(dataset))
open("./missing.json", 'w', encoding='utf-8').write(json.dumps(missing))
open("./dataset_list.json", 'w', encoding='utf-8').write(json.dumps(dataset))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-backend", type=str, default="encodec")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--amp", action="store_true")
parser.add_argument("--input-audio", type=str, default="voices")
parser.add_argument("--input-metadata", type=str, default="metadata")
parser.add_argument("--output_group", type=str, default="training")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--raise-exceptions", action="store_true")
parser.add_argument("--stride", type=int, default=0)
parser.add_argument("--slice", type=str, default="auto")
args = parser.parse_args()
process_dataset( args )
if __name__ == "__main__":
main()

View File

@ -813,7 +813,7 @@ class Base(nn.Module):
inputs_embeds=x,
past_key_values=state,
position_ids=position_ids,
use_cache=True,
use_cache=not self.training,
# return_dict=True,
)
if self.n_experts > 1 and self.training:
@ -1350,15 +1350,6 @@ class Base(nn.Module):
x, m = list_to_tensor(x_list)
training = self.training
# yes, there's a better way.
"""
training = False
for batch_index, batch in enumerate(inputs):
for name, input in batch:
if name == "targ":
training = True
"""
device = x.device
batch_size = len(x_list)