also shifted to transformer's pipeline for transcribing
This commit is contained in:
parent
b81a98799b
commit
7e54e897f7
|
@ -134,7 +134,7 @@ def main():
|
|||
parser.add_argument("--lora", action="store_true")
|
||||
parser.add_argument("--comparison", type=str, default=None)
|
||||
|
||||
parser.add_argument("--transcription-model", type=str, default="base")
|
||||
parser.add_argument("--transcription-model", type=str, default="openai/whisper-base")
|
||||
parser.add_argument("--speaker-similarity-model", type=str, default="microsoft/wavlm-base-sv")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -9,7 +9,14 @@ import argparse
|
|||
import torch
|
||||
import torchaudio
|
||||
|
||||
import whisperx
|
||||
try:
|
||||
import whisperx
|
||||
except Exception as e:
|
||||
whisperx = None
|
||||
print(f"Error while querying for whisperx: {str(e)}")
|
||||
pass
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
from functools import cache
|
||||
from tqdm.auto import tqdm
|
||||
|
@ -17,7 +24,6 @@ from pathlib import Path
|
|||
|
||||
from ..utils import coerce_dtype
|
||||
|
||||
|
||||
def pad(num, zeroes):
|
||||
return str(num).zfill(zeroes+1)
|
||||
|
||||
|
@ -32,7 +38,7 @@ _cached_models = {
|
|||
"align": (None, None),
|
||||
}
|
||||
# yes I can write a decorator to do this
|
||||
def _load_model(model_name="large-v3", device="cuda", dtype="float16", language="auto"):
|
||||
def _load_model(model_name="openai/whisper-large-v3", device="cuda", dtype="float16", language="auto", backend="auto", attention="sdpa"):
|
||||
cache_key = f'{model_name}:{device}:{dtype}:{language}'
|
||||
if _cached_models["model"][0] == cache_key:
|
||||
return _cached_models["model"][1]
|
||||
|
@ -59,28 +65,57 @@ def _load_model(model_name="large-v3", device="cuda", dtype="float16", language=
|
|||
if language != "auto":
|
||||
kwargs["language"] = language
|
||||
|
||||
model = whisperx.load_model(model_name, **kwargs)
|
||||
if backend == "auto" and whisperx is not None:
|
||||
backend = "whisperx"
|
||||
|
||||
if backend == "whisperx":
|
||||
model_name = model_name.replace("openai/whisper-", "")
|
||||
model = whisperx.load_model(model_name, **kwargs)
|
||||
else:
|
||||
model = pipeline(
|
||||
"automatic-speech-recognition",
|
||||
model=model_name,
|
||||
torch_dtype=coerce_dtype(dtype),
|
||||
device=device,
|
||||
model_kwargs={"attn_implementation": attention},
|
||||
)
|
||||
|
||||
_cached_models["model"] = (cache_key, model)
|
||||
return model
|
||||
|
||||
def _load_diarization_model(device="cuda"):
|
||||
def _load_diarization_model(device="cuda", backend="auto"):
|
||||
cache_key = f'{device}'
|
||||
|
||||
if _cached_models["diarization"][0] == cache_key:
|
||||
return _cached_models["diarization"][1]
|
||||
del _cached_models["diarization"]
|
||||
model = whisperx.DiarizationPipeline(device=device)
|
||||
|
||||
if backend == "auto" and whisperx is not None:
|
||||
backend = "whisperx"
|
||||
|
||||
if backend == "whisperx":
|
||||
model = whisperx.DiarizationPipeline(device=device)
|
||||
else:
|
||||
model = None # to do later
|
||||
|
||||
_cached_models["diarization"] = (cache_key, model)
|
||||
return model
|
||||
|
||||
def _load_align_model(language, device="cuda"):
|
||||
def _load_align_model(language, device="cuda", backend="auto"):
|
||||
cache_key = f'{language}:{device}'
|
||||
|
||||
if _cached_models["align"][0] == cache_key:
|
||||
return _cached_models["align"][1]
|
||||
del _cached_models["align"]
|
||||
model = whisperx.load_align_model(language_code=language, device=device)
|
||||
|
||||
if backend == "auto" and whisperx is not None:
|
||||
backend = "whisperx"
|
||||
|
||||
if backend == "whisperx":
|
||||
model = whisperx.load_align_model(language_code=language, device=device)
|
||||
else:
|
||||
model = None # to do later
|
||||
|
||||
_cached_models["align"] = (cache_key, model)
|
||||
return model
|
||||
|
||||
|
@ -111,6 +146,70 @@ def transcribe(
|
|||
"end": 0,
|
||||
}
|
||||
|
||||
# load requested models
|
||||
model_kwargs["backend"] = "automatic-speech-recognition"
|
||||
device = model_kwargs.get("device", "cuda")
|
||||
model = _load_model(language=language, **model_kwargs)
|
||||
|
||||
result = model(
|
||||
str(audio),
|
||||
chunk_length_s=30,
|
||||
batch_size=batch_size,
|
||||
generate_kwargs={"task": "transcribe", "language": None if language == "auto" else language},
|
||||
return_timestamps="word" if align else False,
|
||||
return_language=True,
|
||||
)
|
||||
|
||||
start = 0
|
||||
end = 0
|
||||
segments = []
|
||||
for segment in result["chunks"]:
|
||||
text = segment["text"]
|
||||
|
||||
if "timestamp" in segment:
|
||||
s, e = segment["timestamp"]
|
||||
start = min( start, s )
|
||||
end = max( end, e )
|
||||
else:
|
||||
s, e = None, None
|
||||
|
||||
if language == "auto":
|
||||
language = segment["language"]
|
||||
|
||||
segments.append({
|
||||
"start": s,
|
||||
"end": e,
|
||||
"text": text,
|
||||
})
|
||||
|
||||
if language != "auto":
|
||||
metadata["language"] = language
|
||||
|
||||
metadata["segments"] = segments
|
||||
metadata["text"] = result["text"].strip()
|
||||
metadata["start"] = start
|
||||
metadata["end"] = end
|
||||
|
||||
return metadata
|
||||
|
||||
# for backwards compat since it also handles some other things for me
|
||||
def transcribe_whisperx(
|
||||
audio,
|
||||
language = "auto",
|
||||
diarize = False,
|
||||
batch_size = 16,
|
||||
verbose=False,
|
||||
align=True,
|
||||
**model_kwargs,
|
||||
):
|
||||
metadata = {
|
||||
"segments": [],
|
||||
"language": "",
|
||||
"text": "",
|
||||
"start": 0,
|
||||
"end": 0,
|
||||
}
|
||||
|
||||
# load requested models
|
||||
device = model_kwargs.get("device", "cuda")
|
||||
model = _load_model(language=language, **model_kwargs)
|
||||
|
@ -154,7 +253,7 @@ def transcribe_batch(
|
|||
input_audio = "voices",
|
||||
input_voice = None,
|
||||
output_metadata = "training/metadata",
|
||||
model_name = "large-v3",
|
||||
model_name = "openai/whisper-large-v3",
|
||||
|
||||
skip_existing = True,
|
||||
diarize = False,
|
||||
|
@ -178,12 +277,6 @@ def transcribe_batch(
|
|||
if input_voice is not None:
|
||||
only_speakers = [input_voice]
|
||||
|
||||
"""
|
||||
align_model, align_model_metadata, align_model_language = (None, None, None)
|
||||
model =_load_model(model_name, device, compute_type=dtype)
|
||||
diarize_model = _load_diarization_model(device=device) if diarize else None
|
||||
"""
|
||||
|
||||
for dataset_name in os.listdir(f'./{input_audio}/'):
|
||||
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
|
||||
continue
|
||||
|
@ -222,47 +315,7 @@ def transcribe_batch(
|
|||
if os.path.isdir(inpath):
|
||||
continue
|
||||
|
||||
metadata[filename] = transcribe( inpath, model_name=model_name, diarize=diarize, device=device, dtype=dtype )
|
||||
|
||||
"""
|
||||
metadata[filename] = {
|
||||
"segments": [],
|
||||
"language": "",
|
||||
"text": "",
|
||||
"start": 0,
|
||||
"end": 0,
|
||||
}
|
||||
|
||||
audio = whisperx.load_audio(inpath)
|
||||
result = model.transcribe(audio, batch_size=batch_size)
|
||||
language = result["language"]
|
||||
|
||||
if align_model_language != language:
|
||||
tqdm.write(f'Loading language: {language}')
|
||||
align_model_language = language
|
||||
align_model, align_model_metadata = _load_align_model(language=language, device=device)
|
||||
|
||||
result = whisperx.align(result["segments"], align_model, align_model_metadata, audio, device, return_char_alignments=False)
|
||||
|
||||
metadata[filename]["segments"] = result["segments"]
|
||||
metadata[filename]["language"] = language
|
||||
|
||||
if diarize_model is not None:
|
||||
diarize_segments = diarize_model(audio)
|
||||
result = whisperx.assign_word_speakers(diarize_segments, result)
|
||||
|
||||
text = []
|
||||
start = 0
|
||||
end = 0
|
||||
for segment in result["segments"]:
|
||||
text.append( segment["text"] )
|
||||
start = min( start, segment["start"] )
|
||||
end = max( end, segment["end"] )
|
||||
|
||||
metadata[filename]["text"] = " ".join(text).strip()
|
||||
metadata[filename]["start"] = start
|
||||
metadata[filename]["end"] = end
|
||||
"""
|
||||
metadata[filename] = transcribe_whisperx( inpath, model_name=model_name, diarize=diarize, device=device, dtype=dtype )
|
||||
|
||||
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
|
||||
|
||||
|
@ -273,7 +326,7 @@ def main():
|
|||
parser.add_argument("--input-voice", type=str, default=None)
|
||||
parser.add_argument("--output-metadata", type=str, default="training/metadata")
|
||||
|
||||
parser.add_argument("--model-name", type=str, default="large-v3")
|
||||
parser.add_argument("--model-name", type=str, default="openai/whisper-large-v3")
|
||||
parser.add_argument("--skip-existing", action="store_true")
|
||||
parser.add_argument("--diarize", action="store_true")
|
||||
parser.add_argument("--batch-size", type=int, default=16)
|
||||
|
|
Loading…
Reference in New Issue
Block a user