also shifted to transformer's pipeline for transcribing
This commit is contained in:
parent
b81a98799b
commit
7e54e897f7
|
@ -134,7 +134,7 @@ def main():
|
||||||
parser.add_argument("--lora", action="store_true")
|
parser.add_argument("--lora", action="store_true")
|
||||||
parser.add_argument("--comparison", type=str, default=None)
|
parser.add_argument("--comparison", type=str, default=None)
|
||||||
|
|
||||||
parser.add_argument("--transcription-model", type=str, default="base")
|
parser.add_argument("--transcription-model", type=str, default="openai/whisper-base")
|
||||||
parser.add_argument("--speaker-similarity-model", type=str, default="microsoft/wavlm-base-sv")
|
parser.add_argument("--speaker-similarity-model", type=str, default="microsoft/wavlm-base-sv")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
|
@ -9,7 +9,14 @@ import argparse
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
|
||||||
import whisperx
|
try:
|
||||||
|
import whisperx
|
||||||
|
except Exception as e:
|
||||||
|
whisperx = None
|
||||||
|
print(f"Error while querying for whisperx: {str(e)}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
from functools import cache
|
from functools import cache
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
|
@ -17,7 +24,6 @@ from pathlib import Path
|
||||||
|
|
||||||
from ..utils import coerce_dtype
|
from ..utils import coerce_dtype
|
||||||
|
|
||||||
|
|
||||||
def pad(num, zeroes):
|
def pad(num, zeroes):
|
||||||
return str(num).zfill(zeroes+1)
|
return str(num).zfill(zeroes+1)
|
||||||
|
|
||||||
|
@ -32,7 +38,7 @@ _cached_models = {
|
||||||
"align": (None, None),
|
"align": (None, None),
|
||||||
}
|
}
|
||||||
# yes I can write a decorator to do this
|
# yes I can write a decorator to do this
|
||||||
def _load_model(model_name="large-v3", device="cuda", dtype="float16", language="auto"):
|
def _load_model(model_name="openai/whisper-large-v3", device="cuda", dtype="float16", language="auto", backend="auto", attention="sdpa"):
|
||||||
cache_key = f'{model_name}:{device}:{dtype}:{language}'
|
cache_key = f'{model_name}:{device}:{dtype}:{language}'
|
||||||
if _cached_models["model"][0] == cache_key:
|
if _cached_models["model"][0] == cache_key:
|
||||||
return _cached_models["model"][1]
|
return _cached_models["model"][1]
|
||||||
|
@ -59,28 +65,57 @@ def _load_model(model_name="large-v3", device="cuda", dtype="float16", language=
|
||||||
if language != "auto":
|
if language != "auto":
|
||||||
kwargs["language"] = language
|
kwargs["language"] = language
|
||||||
|
|
||||||
model = whisperx.load_model(model_name, **kwargs)
|
if backend == "auto" and whisperx is not None:
|
||||||
|
backend = "whisperx"
|
||||||
|
|
||||||
|
if backend == "whisperx":
|
||||||
|
model_name = model_name.replace("openai/whisper-", "")
|
||||||
|
model = whisperx.load_model(model_name, **kwargs)
|
||||||
|
else:
|
||||||
|
model = pipeline(
|
||||||
|
"automatic-speech-recognition",
|
||||||
|
model=model_name,
|
||||||
|
torch_dtype=coerce_dtype(dtype),
|
||||||
|
device=device,
|
||||||
|
model_kwargs={"attn_implementation": attention},
|
||||||
|
)
|
||||||
|
|
||||||
_cached_models["model"] = (cache_key, model)
|
_cached_models["model"] = (cache_key, model)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def _load_diarization_model(device="cuda"):
|
def _load_diarization_model(device="cuda", backend="auto"):
|
||||||
cache_key = f'{device}'
|
cache_key = f'{device}'
|
||||||
|
|
||||||
if _cached_models["diarization"][0] == cache_key:
|
if _cached_models["diarization"][0] == cache_key:
|
||||||
return _cached_models["diarization"][1]
|
return _cached_models["diarization"][1]
|
||||||
del _cached_models["diarization"]
|
del _cached_models["diarization"]
|
||||||
model = whisperx.DiarizationPipeline(device=device)
|
|
||||||
|
if backend == "auto" and whisperx is not None:
|
||||||
|
backend = "whisperx"
|
||||||
|
|
||||||
|
if backend == "whisperx":
|
||||||
|
model = whisperx.DiarizationPipeline(device=device)
|
||||||
|
else:
|
||||||
|
model = None # to do later
|
||||||
|
|
||||||
_cached_models["diarization"] = (cache_key, model)
|
_cached_models["diarization"] = (cache_key, model)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def _load_align_model(language, device="cuda"):
|
def _load_align_model(language, device="cuda", backend="auto"):
|
||||||
cache_key = f'{language}:{device}'
|
cache_key = f'{language}:{device}'
|
||||||
|
|
||||||
if _cached_models["align"][0] == cache_key:
|
if _cached_models["align"][0] == cache_key:
|
||||||
return _cached_models["align"][1]
|
return _cached_models["align"][1]
|
||||||
del _cached_models["align"]
|
del _cached_models["align"]
|
||||||
model = whisperx.load_align_model(language_code=language, device=device)
|
|
||||||
|
if backend == "auto" and whisperx is not None:
|
||||||
|
backend = "whisperx"
|
||||||
|
|
||||||
|
if backend == "whisperx":
|
||||||
|
model = whisperx.load_align_model(language_code=language, device=device)
|
||||||
|
else:
|
||||||
|
model = None # to do later
|
||||||
|
|
||||||
_cached_models["align"] = (cache_key, model)
|
_cached_models["align"] = (cache_key, model)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
@ -111,6 +146,70 @@ def transcribe(
|
||||||
"end": 0,
|
"end": 0,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# load requested models
|
||||||
|
model_kwargs["backend"] = "automatic-speech-recognition"
|
||||||
|
device = model_kwargs.get("device", "cuda")
|
||||||
|
model = _load_model(language=language, **model_kwargs)
|
||||||
|
|
||||||
|
result = model(
|
||||||
|
str(audio),
|
||||||
|
chunk_length_s=30,
|
||||||
|
batch_size=batch_size,
|
||||||
|
generate_kwargs={"task": "transcribe", "language": None if language == "auto" else language},
|
||||||
|
return_timestamps="word" if align else False,
|
||||||
|
return_language=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
start = 0
|
||||||
|
end = 0
|
||||||
|
segments = []
|
||||||
|
for segment in result["chunks"]:
|
||||||
|
text = segment["text"]
|
||||||
|
|
||||||
|
if "timestamp" in segment:
|
||||||
|
s, e = segment["timestamp"]
|
||||||
|
start = min( start, s )
|
||||||
|
end = max( end, e )
|
||||||
|
else:
|
||||||
|
s, e = None, None
|
||||||
|
|
||||||
|
if language == "auto":
|
||||||
|
language = segment["language"]
|
||||||
|
|
||||||
|
segments.append({
|
||||||
|
"start": s,
|
||||||
|
"end": e,
|
||||||
|
"text": text,
|
||||||
|
})
|
||||||
|
|
||||||
|
if language != "auto":
|
||||||
|
metadata["language"] = language
|
||||||
|
|
||||||
|
metadata["segments"] = segments
|
||||||
|
metadata["text"] = result["text"].strip()
|
||||||
|
metadata["start"] = start
|
||||||
|
metadata["end"] = end
|
||||||
|
|
||||||
|
return metadata
|
||||||
|
|
||||||
|
# for backwards compat since it also handles some other things for me
|
||||||
|
def transcribe_whisperx(
|
||||||
|
audio,
|
||||||
|
language = "auto",
|
||||||
|
diarize = False,
|
||||||
|
batch_size = 16,
|
||||||
|
verbose=False,
|
||||||
|
align=True,
|
||||||
|
**model_kwargs,
|
||||||
|
):
|
||||||
|
metadata = {
|
||||||
|
"segments": [],
|
||||||
|
"language": "",
|
||||||
|
"text": "",
|
||||||
|
"start": 0,
|
||||||
|
"end": 0,
|
||||||
|
}
|
||||||
|
|
||||||
# load requested models
|
# load requested models
|
||||||
device = model_kwargs.get("device", "cuda")
|
device = model_kwargs.get("device", "cuda")
|
||||||
model = _load_model(language=language, **model_kwargs)
|
model = _load_model(language=language, **model_kwargs)
|
||||||
|
@ -154,7 +253,7 @@ def transcribe_batch(
|
||||||
input_audio = "voices",
|
input_audio = "voices",
|
||||||
input_voice = None,
|
input_voice = None,
|
||||||
output_metadata = "training/metadata",
|
output_metadata = "training/metadata",
|
||||||
model_name = "large-v3",
|
model_name = "openai/whisper-large-v3",
|
||||||
|
|
||||||
skip_existing = True,
|
skip_existing = True,
|
||||||
diarize = False,
|
diarize = False,
|
||||||
|
@ -178,12 +277,6 @@ def transcribe_batch(
|
||||||
if input_voice is not None:
|
if input_voice is not None:
|
||||||
only_speakers = [input_voice]
|
only_speakers = [input_voice]
|
||||||
|
|
||||||
"""
|
|
||||||
align_model, align_model_metadata, align_model_language = (None, None, None)
|
|
||||||
model =_load_model(model_name, device, compute_type=dtype)
|
|
||||||
diarize_model = _load_diarization_model(device=device) if diarize else None
|
|
||||||
"""
|
|
||||||
|
|
||||||
for dataset_name in os.listdir(f'./{input_audio}/'):
|
for dataset_name in os.listdir(f'./{input_audio}/'):
|
||||||
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
|
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
|
||||||
continue
|
continue
|
||||||
|
@ -222,47 +315,7 @@ def transcribe_batch(
|
||||||
if os.path.isdir(inpath):
|
if os.path.isdir(inpath):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
metadata[filename] = transcribe( inpath, model_name=model_name, diarize=diarize, device=device, dtype=dtype )
|
metadata[filename] = transcribe_whisperx( inpath, model_name=model_name, diarize=diarize, device=device, dtype=dtype )
|
||||||
|
|
||||||
"""
|
|
||||||
metadata[filename] = {
|
|
||||||
"segments": [],
|
|
||||||
"language": "",
|
|
||||||
"text": "",
|
|
||||||
"start": 0,
|
|
||||||
"end": 0,
|
|
||||||
}
|
|
||||||
|
|
||||||
audio = whisperx.load_audio(inpath)
|
|
||||||
result = model.transcribe(audio, batch_size=batch_size)
|
|
||||||
language = result["language"]
|
|
||||||
|
|
||||||
if align_model_language != language:
|
|
||||||
tqdm.write(f'Loading language: {language}')
|
|
||||||
align_model_language = language
|
|
||||||
align_model, align_model_metadata = _load_align_model(language=language, device=device)
|
|
||||||
|
|
||||||
result = whisperx.align(result["segments"], align_model, align_model_metadata, audio, device, return_char_alignments=False)
|
|
||||||
|
|
||||||
metadata[filename]["segments"] = result["segments"]
|
|
||||||
metadata[filename]["language"] = language
|
|
||||||
|
|
||||||
if diarize_model is not None:
|
|
||||||
diarize_segments = diarize_model(audio)
|
|
||||||
result = whisperx.assign_word_speakers(diarize_segments, result)
|
|
||||||
|
|
||||||
text = []
|
|
||||||
start = 0
|
|
||||||
end = 0
|
|
||||||
for segment in result["segments"]:
|
|
||||||
text.append( segment["text"] )
|
|
||||||
start = min( start, segment["start"] )
|
|
||||||
end = max( end, segment["end"] )
|
|
||||||
|
|
||||||
metadata[filename]["text"] = " ".join(text).strip()
|
|
||||||
metadata[filename]["start"] = start
|
|
||||||
metadata[filename]["end"] = end
|
|
||||||
"""
|
|
||||||
|
|
||||||
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
|
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
|
||||||
|
|
||||||
|
@ -273,7 +326,7 @@ def main():
|
||||||
parser.add_argument("--input-voice", type=str, default=None)
|
parser.add_argument("--input-voice", type=str, default=None)
|
||||||
parser.add_argument("--output-metadata", type=str, default="training/metadata")
|
parser.add_argument("--output-metadata", type=str, default="training/metadata")
|
||||||
|
|
||||||
parser.add_argument("--model-name", type=str, default="large-v3")
|
parser.add_argument("--model-name", type=str, default="openai/whisper-large-v3")
|
||||||
parser.add_argument("--skip-existing", action="store_true")
|
parser.add_argument("--skip-existing", action="store_true")
|
||||||
parser.add_argument("--diarize", action="store_true")
|
parser.add_argument("--diarize", action="store_true")
|
||||||
parser.add_argument("--batch-size", type=int, default=16)
|
parser.add_argument("--batch-size", type=int, default=16)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user