separated samplers into its own file, don't bother copying the logits back to the GPU after sampling, it's not necessary

This commit is contained in:
mrq 2023-10-11 12:25:31 -05:00
parent 100dd164e6
commit 7facacf7c9
5 changed files with 167 additions and 163 deletions

View File

@ -201,7 +201,7 @@ class AR(Base):
for i, ri in enumerate(r):
if self.stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri])
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == self.stop_token

View File

@ -120,8 +120,6 @@ class AR_NAR(Base):
if cfg.experimental:
proms_list = [ r if l == 0 else trim(r, 75 * 3) for r, l in zip(proms_list, quant_levels) ] # trim input prompt to 3 seconds
#quant_levels.to(device=device)
return super().forward(
text_list=text_list,
proms_list=proms_list,
@ -140,7 +138,7 @@ class AR_NAR(Base):
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
quant_levels = torch.full((len(text_list),), level, device=device)
quant_levels = torch.full((len(text_list),), level)
logits = super().forward(
text_list=text_list,
@ -165,7 +163,7 @@ class AR_NAR(Base):
#mirostat=mirostat,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list
@ -238,7 +236,7 @@ class AR_NAR(Base):
for i, ri in enumerate(r):
if self.stop_token in ri:
stopped[i] = True
sequence_list[i] = torch.cat([sequence_list[i], ri])
sequence_list[i] = torch.cat([sequence_list[i], ri.to(device)])
# stop token found
stopped |= r == self.stop_token

View File

@ -16,6 +16,7 @@ from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, Mult
from .retnet import RetNetDecoder, RetNetConfig
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
from ..samplers import reptition_penalize, length_penalize, top_k_top_p_filtering, dynamic_temperature, top_k_logits_list, mirostat_sample
def _create_mask(l, device):
"""1 is valid region and 0 is invalid."""
@ -50,159 +51,6 @@ def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
m = m.to(x)
return x, m
# Simple filter to modify a token's probability if it shows up in the past
# `one_time` will only apply the penalty once
# `decay` is a factor that will exponentially apply to how far away it is
def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ):
if factor == 1.0 or previous is None:
return logits
unique = set()
priors = reversed(previous.tolist())
for distance, token in enumerate(priors):
# skip if we're only applying the decay once
if one_time and token in unique:
continue
distance += 1
logits[:, token] /= factor * (distance ** decay)
# add to set if we care about it
if one_time:
unique.add(token)
return logits
# Simple "filter" that modifies the logit for the stop token, based on the sequence length
# `length` is the length of the sequence currently
# `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences
# `token` is the stop token.
def length_penalize( logits, length, factor=0.0, token=-1 ):
if factor == 0.0:
return logits
logits[:, token] /= (length ** factor)
return logits
# Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens per batch example in the output
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens > 1:
# Keep at least min_tokens (set to min_tokens-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
# credit to https://github.com/LostRuins/koboldcpp/pull/464 // https://github.com/kalomaze/koboldcpp/tree/dynamic-temp
def dynamic_temperature( logits, temperature=1.0, min_temperature = 0.0, k = 10, sigmoidCenterPoint = 0.5 ):
# loop over logits[:], as the NAR will have logits.shape[0] > 1
for i in range(logits.shape[0]):
sum_exp = 0.0
maximum = torch.max( logits[i] )
for logit in logits[i]:
sum_exp += math.exp( logit - maximum )
prob_max_token_before_temp = 1.0 / sum_exp
dynamic_temperature = temperature - (temperature - min_temperature) / (1 + math.exp(-k * (prob_max_token_before_temp - sigmoidCenterPoint)))
logits[i] /= dynamic_temperature
return logits
# picks the top K tokens amongst a batch of logits
# logits: [Tensor] list of logits
# candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from
def top_k_logits_list( logits_list, k ):
# ( batch, tokens ) => ( batch x tokens )
logits = torch.cat( logits_list )
candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits
for i, index in enumerate(candidates):
t = []
N = np.prod(logits.size())
for n in logits.size():
N //= n
t.append(index // N)
index %= N
candidates[i] = tuple(t)
return candidates
# Credit to: https://github.com/basusourya/mirostat/
# performs mirostat-based sampling
# logits: Tensor of logit probabilities
# state: the mirostat state
def mirostat_sample( logits, state = None ):
def compute_k(prob, n, tau):
num = 0
den = 0
for i in range(100):
b = prob[i]/prob[i+1]
t = (i+2)/(i+1)
num += math.log(b)*math.log(t)
den += math.log(t)**2
s = num/den
eps = s-1
k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s)
k = round(k)
return k
if "max_surprise" not in state:
state["max_surprise"] = state["tau"] * 2
if "error_surprise" not in state:
state["error_surprise"] = 0
if "running_total_surprise" not in state:
state["running_total_surprise"] = 0
sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True )
prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist()
k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
prob_topk = torch.softmax(sorted_logits, dim = 0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
state["index_surprise"] = math.log2(1/prob_original[prev_i])
state["running_total_surprise"] += state["index_surprise"]
state["error_surprise"] = state["index_surprise"] - state["tau"]
state["max_surprise"] -= state["eta"] * state["error_surprise"]
state["token"] = sorted_indices[prev_i]
return state
# automagically parses a batch-list and returns it as a list
class Embedding(nn.Embedding):
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
@ -594,12 +442,12 @@ class Base(nn.Module):
# to-do: not naively implement beam searching
if beam_width > 1:
candidates = top_k_logits_list( logits, beam_width )
res = [ torch.tensor(token, device=logits[batch].device, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ]
scores = [ logits[batch].flatten()[token].to(logits[batch].device) for batch, token in candidates ]
res = [ torch.tensor(token, dtype=torch.int16).unsqueeze(dim=-1) for batch, token in candidates ]
scores = [ logits[batch].flatten()[token] for batch, token in candidates ]
return res, scores
# and sample
return [ Categorical(logits=logit).sample().to(device) for logit, device in zip(logits, devices) ]
return [ Categorical(logits=logit).sample() for logit in logits ]
def example_usage():
from ..config import cfg

View File

@ -159,7 +159,7 @@ class NAR(Base):
#mirostat_state=mirostat_state,
)
prev_list = [ torch.cat([rs, r.unsqueeze(-1)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
prev_list = [ torch.cat([rs, r.unsqueeze(-1).to(device)], dim=-1) for rs, r in zip(prev_list, resps_list) ]
return prev_list

158
vall_e/samplers.py Normal file
View File

@ -0,0 +1,158 @@
import math
import torch
import torch.nn.functional as F
import numpy as np
from torch import Tensor, einsum, nn
# Simple filter to modify a token's probability if it shows up in the past
# `one_time` will only apply the penalty once
# `decay` is a factor that will exponentially apply to how far away it is
def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ):
if factor == 1.0 or previous is None:
return logits
unique = set()
priors = reversed(previous.tolist())
for distance, token in enumerate(priors):
# skip if we're only applying the decay once
if one_time and token in unique:
continue
distance += 1
logits[:, token] /= factor * (distance ** decay)
# add to set if we care about it
if one_time:
unique.add(token)
return logits
# Simple "filter" that modifies the logit for the stop token, based on the sequence length
# `length` is the length of the sequence currently
# `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences
# `token` is the stop token.
def length_penalize( logits, length, factor=0.0, token=-1 ):
if factor == 0.0:
return logits
logits[:, token] /= (length ** factor)
return logits
# Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens per batch example in the output
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens > 1:
# Keep at least min_tokens (set to min_tokens-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
# credit to https://github.com/LostRuins/koboldcpp/pull/464 // https://github.com/kalomaze/koboldcpp/tree/dynamic-temp
def dynamic_temperature( logits, temperature=1.0, min_temperature = 0.0, k = 10, sigmoidCenterPoint = 0.5 ):
# loop over logits[:], as the NAR will have logits.shape[0] > 1
for i in range(logits.shape[0]):
sum_exp = 0.0
maximum = torch.max( logits[i] )
for logit in logits[i]:
sum_exp += math.exp( logit - maximum )
prob_max_token_before_temp = 1.0 / sum_exp
dynamic_temperature = temperature - (temperature - min_temperature) / (1 + math.exp(-k * (prob_max_token_before_temp - sigmoidCenterPoint)))
logits[i] /= dynamic_temperature
return logits
# picks the top K tokens amongst a batch of logits
# logits: [Tensor] list of logits
# candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from
def top_k_logits_list( logits_list, k ):
# ( batch, tokens ) => ( batch x tokens )
logits = torch.cat( logits_list )
candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits
for i, index in enumerate(candidates):
t = []
N = np.prod(logits.size())
for n in logits.size():
N //= n
t.append(index // N)
index %= N
candidates[i] = tuple(t)
return candidates
# Credit to: https://github.com/basusourya/mirostat/
# performs mirostat-based sampling
# logits: Tensor of logit probabilities
# state: the mirostat state
def mirostat_sample( logits, state = None ):
def compute_k(prob, n, tau):
num = 0
den = 0
for i in range(100):
b = prob[i]/prob[i+1]
t = (i+2)/(i+1)
num += math.log(b)*math.log(t)
den += math.log(t)**2
s = num/den
eps = s-1
k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s)
k = round(k)
return k
if "max_surprise" not in state:
state["max_surprise"] = state["tau"] * 2
if "error_surprise" not in state:
state["error_surprise"] = 0
if "running_total_surprise" not in state:
state["running_total_surprise"] = 0
sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True )
prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist()
k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
prob_topk = torch.softmax(sorted_logits, dim = 0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
state["index_surprise"] = math.log2(1/prob_original[prev_i])
state["running_total_surprise"] += state["index_surprise"]
state["error_surprise"] = state["index_surprise"] - state["tau"]
state["max_surprise"] -= state["eta"] * state["error_surprise"]
state["token"] = sorted_indices[prev_i]
return state