working vall_e.cpp

This commit is contained in:
mrq 2024-12-24 17:54:48 -06:00
parent 2b4d783299
commit 82e8592f2a
5 changed files with 350 additions and 143 deletions

View File

@ -1,16 +1,78 @@
# this is a VERY rudimentary script to test if a HF-ified model works (it sort of does) # this is a VERY rudimentary script to test if a HF-ified model works (it sort of does)
import torch import torch
from transformers import LlamaForCausalLM, LlamaTokenizer from transformers import LlamaForCausalLM, LlamaModel, LlamaConfig, LlamaTokenizer
from torch.distributions import Categorical from torch.distributions import Categorical
# tokenizer = LlamaTokenizer.from_pretrained("./training/llama-encodec-ar+nar-len/hf/") from vall_e.emb.qnt import decode_to_file
model = LlamaForCausalLM.from_pretrained("./training/llama-encodec-ar+nar-len/hf/") from vall_e.utils.io import torch_load
model.to(device="cuda", dtype=torch.bfloat16)
model.eval()
mode = "nar" # hack in a non-causal mask
def _update_noncausal_mask(
attention_mask,
inputs_embeds,
cache_positions,
past_key_values_length,
output_attentions,
):
# create noncausal mask
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
bsz, seq_len, _ = inputs_embeds.size()
# generate default mask based on input
if attention_mask is None:
attention_mask = torch.ones( (bsz, seq_len), dtype=torch.bool, device=inputs_embeds.device )
# make square
expanded_mask = attention_mask[:, None, None, :].expand( bsz, 1, seq_len, seq_len ).to( dtype=inputs_embeds.dtype )
# invert from 1.0 = attend, 0.0 = masked to 0.0 = valid, -inf = masked
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill( inverted_mask.to(dtype=torch.bool), torch.finfo(inputs_embeds.dtype).min )
device = "cuda"
dtype = torch.bfloat16
is_from_pretrained = True
if is_from_pretrained:
# tokenizer = LlamaTokenizer.from_pretrained("./training/llama-encodec-ar+nar-len/hf/")
hf_model = LlamaForCausalLM.from_pretrained("./training/llama-encodec-ar+nar-len/hf/")
hf_model.to(device=device, dtype=dtype)
hf_model.eval()
model = hf_model.model
else:
model = LlamaModel(LlamaConfig(
vocab_size=1024,
hidden_size=1024,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
intermediate_size=1024*4,
num_hidden_layers=12,
num_attention_heads=16,
attention_dropout=0.0,
num_key_value_heads=16,
sliding_window=75 * 12, # 12 second context window
hidden_act="gelu",
is_encoder_decoder=False,
is_decoder=True,
))
state_dict = torch_load("./training/llama-encodec-ar+nar-len/ckpt/ar+nar-len-llama-8/fp32.sft")['module']
state_dict_model = {}
for k, v in state_dict.items():
if not k.startswith('model.'):
continue
state_dict_model[k.replace("model.", "")] = v
model.load_state_dict( state_dict_model, strict=False )
model.to(device=device, dtype=dtype)
model.eval()
model._original_update_causal_mask = model._update_causal_mask
model._update_noncausal_mask = _update_noncausal_mask
phn = [1,22,111,100,4,37,115,169,11,2] phn = [1,22,111,100,4,37,115,169,11,2]
@ -24,6 +86,8 @@ prom = [
[485,748,562,562,485,380,834,997,78,963,755,142,978,135,362,421,217,79,530,1012,972,946,127,587,838,818,456,548,424,479,944,650,694,447,391,616,938,908,206,259,998,292,818,128,353,273,566,796,333,146,110,986,571,451,166,229,421,300,911,689,329,145,287,273,542,808,301,491,0,278,825,442,0,100,818,826,66,904,642,566,135,305,999,993,905,485,755,782,365,977,485,1015,570,1002,755,169,967,36,721,1019,273,931,273,166,216,31,346,946,32,290,362,828,464,748,782,1002,1015,755,1014,100,315,777,549,177,882,110,603,975,531,608,67,1011,950,465,368,416,798,941,635,602,553,300,200,644,498,325,786,734,342,222,403,1,716,175,899,273,40,333,999,74,54,644,408,976,407,631,577,338,435,612,333,273,162,709,882,555,384,995,173,459,442,72,72,200,72,711,219,282,716,442,431,801,976,130,622,72,582,384,516,772,0,440,1001,249,1,953,65,945,438,249,511,561,205,507,821,998,427,746,290,544,426,693,999,190,214,167,219,534,166,325,975,414,326,326,268,679,991,418,868,445,632,160,380,890,346,315,806,258,806,486,326,797,471,18,790,33,66,63,66,224,38,599,599,110,801,761,18,936,230,253,171,393,774,887,887,403,466,495,524,261,666,256,687,759,263,713,185,454,242,988,185,161,911,430,86,550,439,327,527,671,782,383,916,590,315,806,583,465,785,321,315,421,856,66,352,0,634,540,362,948,185,16,224,372,694,259,648,87,733,659,603,67,269,901,66,566,173,705,746,566,911,10,743,860,78,782,1002,755,389,175], [485,748,562,562,485,380,834,997,78,963,755,142,978,135,362,421,217,79,530,1012,972,946,127,587,838,818,456,548,424,479,944,650,694,447,391,616,938,908,206,259,998,292,818,128,353,273,566,796,333,146,110,986,571,451,166,229,421,300,911,689,329,145,287,273,542,808,301,491,0,278,825,442,0,100,818,826,66,904,642,566,135,305,999,993,905,485,755,782,365,977,485,1015,570,1002,755,169,967,36,721,1019,273,931,273,166,216,31,346,946,32,290,362,828,464,748,782,1002,1015,755,1014,100,315,777,549,177,882,110,603,975,531,608,67,1011,950,465,368,416,798,941,635,602,553,300,200,644,498,325,786,734,342,222,403,1,716,175,899,273,40,333,999,74,54,644,408,976,407,631,577,338,435,612,333,273,162,709,882,555,384,995,173,459,442,72,72,200,72,711,219,282,716,442,431,801,976,130,622,72,582,384,516,772,0,440,1001,249,1,953,65,945,438,249,511,561,205,507,821,998,427,746,290,544,426,693,999,190,214,167,219,534,166,325,975,414,326,326,268,679,991,418,868,445,632,160,380,890,346,315,806,258,806,486,326,797,471,18,790,33,66,63,66,224,38,599,599,110,801,761,18,936,230,253,171,393,774,887,887,403,466,495,524,261,666,256,687,759,263,713,185,454,242,988,185,161,911,430,86,550,439,327,527,671,782,383,916,590,315,806,583,465,785,321,315,421,856,66,352,0,634,540,362,948,185,16,224,372,694,259,648,87,733,659,603,67,269,901,66,566,173,705,746,566,911,10,743,860,78,782,1002,755,389,175],
[948,948,975,975,948,322,672,639,902,55,916,439,498,389,407,682,451,401,386,440,499,348,736,891,603,762,783,407,886,76,543,699,137,458,639,253,63,475,55,436,502,888,542,131,524,167,738,131,907,29,378,545,227,382,478,399,218,872,917,202,330,2,371,264,667,355,1016,768,590,408,463,542,214,202,715,891,840,297,509,689,290,439,672,714,528,940,1019,534,975,475,1019,835,975,558,975,981,330,635,96,858,606,627,367,191,191,669,40,873,359,267,701,426,210,1012,899,975,475,1012,610,6,300,749,231,616,877,631,720,574,551,398,503,789,684,664,390,277,150,990,823,190,971,903,175,863,316,965,988,988,800,612,336,506,242,847,389,939,415,202,83,317,2,153,365,363,57,2,891,965,300,754,763,426,555,621,303,415,367,902,829,741,119,380,902,25,884,439,822,49,76,760,566,316,249,555,774,955,834,309,859,173,935,812,682,586,141,606,197,131,644,631,913,586,202,117,810,884,76,592,754,531,586,925,649,583,145,816,821,283,871,1017,316,377,646,339,201,76,780,76,976,217,38,598,977,617,825,833,49,231,749,749,633,205,231,271,50,249,684,555,982,526,895,288,22,57,722,996,260,1018,110,833,644,738,648,468,798,297,769,282,197,402,465,510,194,930,182,909,749,986,187,187,917,38,38,985,985,988,815,878,814,459,237,768,781,649,683,749,934,729,463,181,625,231,917,96,499,839,720,439,842,205,808,338,617,681,326,446,905,346,647,533,49,728,147,432,846,536,586,611,49,879,872,893,859,859,961,989,975,701,495,65], [948,948,975,975,948,322,672,639,902,55,916,439,498,389,407,682,451,401,386,440,499,348,736,891,603,762,783,407,886,76,543,699,137,458,639,253,63,475,55,436,502,888,542,131,524,167,738,131,907,29,378,545,227,382,478,399,218,872,917,202,330,2,371,264,667,355,1016,768,590,408,463,542,214,202,715,891,840,297,509,689,290,439,672,714,528,940,1019,534,975,475,1019,835,975,558,975,981,330,635,96,858,606,627,367,191,191,669,40,873,359,267,701,426,210,1012,899,975,475,1012,610,6,300,749,231,616,877,631,720,574,551,398,503,789,684,664,390,277,150,990,823,190,971,903,175,863,316,965,988,988,800,612,336,506,242,847,389,939,415,202,83,317,2,153,365,363,57,2,891,965,300,754,763,426,555,621,303,415,367,902,829,741,119,380,902,25,884,439,822,49,76,760,566,316,249,555,774,955,834,309,859,173,935,812,682,586,141,606,197,131,644,631,913,586,202,117,810,884,76,592,754,531,586,925,649,583,145,816,821,283,871,1017,316,377,646,339,201,76,780,76,976,217,38,598,977,617,825,833,49,231,749,749,633,205,231,271,50,249,684,555,982,526,895,288,22,57,722,996,260,1018,110,833,644,738,648,468,798,297,769,282,197,402,465,510,194,930,182,909,749,986,187,187,917,38,38,985,985,988,815,878,814,459,237,768,781,649,683,749,934,729,463,181,625,231,917,96,499,839,720,439,842,205,808,338,617,681,326,446,905,346,647,533,49,728,147,432,846,536,586,611,49,879,872,893,859,859,961,989,975,701,495,65],
] ]
resp = []
"""
resp = [ resp = [
[922,738,461,341,341,10,416,416,416,416,346,346,346,346,346,484,484,484,484,484,484,333,442,442,359,359,359,459,459,975,975,626,626,626,626,626,610,359,359,359,359,359,359,359,359,359,610,610,442,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,638,638,638,638,975,975,672,875,63,144], [922,738,461,341,341,10,416,416,416,416,346,346,346,346,346,484,484,484,484,484,484,333,442,442,359,359,359,459,459,975,975,626,626,626,626,626,610,359,359,359,359,359,359,359,359,359,610,610,442,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,638,638,638,638,975,975,672,875,63,144],
[993,700,384,213,794,10,305,778,58,225,118,260,768,768,260,474,903,732,70,992,447,70,1000,665,848,379,485,934,181,795,438,298,688,324,934,756,395,795,110,328,343,172,768,871,593,355,396,783,24,24,911,20,27,562,697,616,668,27,27,755,20,505,248,79,822,461,197,156,27,492,151,1013,669,669,562], [993,700,384,213,794,10,305,778,58,225,118,260,768,768,260,474,903,732,70,992,447,70,1000,665,848,379,485,934,181,795,438,298,688,324,934,756,395,795,110,328,343,172,768,871,593,355,396,783,24,24,911,20,27,562,697,616,668,27,27,755,20,505,248,79,822,461,197,156,27,492,151,1013,669,669,562],
@ -34,97 +98,196 @@ resp = [
[365,908,896,819,206,153,515,471,75,79,664,145,145,801,135,321,79,216,233,223,79,66,724,517,135,474,818,818,105,892,971,337,818,19,932,981,469,135,163,75,135,818,999,555,135,710,256,105,590,31,539,1003,517,130,445,40,549,130,859,385,1003,1003,549,33,286,932,329,774,321,664,686,16,834,703,290], [365,908,896,819,206,153,515,471,75,79,664,145,145,801,135,321,79,216,233,223,79,66,724,517,135,474,818,818,105,892,971,337,818,19,932,981,469,135,163,75,135,818,999,555,135,710,256,105,590,31,539,1003,517,130,445,40,549,130,859,385,1003,1003,549,33,286,932,329,774,321,664,686,16,834,703,290],
[899,237,832,748,425,121,460,872,391,586,857,215,306,76,306,554,187,57,482,406,802,555,710,895,448,517,506,316,18,772,779,697,855,1005,792,96,402,96,517,775,506,938,114,986,986,503,749,984,524,527,506,749,463,490,188,374,506,49,537,188,494,900,526,524,524,500,500,345,630,338,982,761,700,598,749], [899,237,832,748,425,121,460,872,391,586,857,215,306,76,306,554,187,57,482,406,802,555,710,895,448,517,506,316,18,772,779,697,855,1005,792,96,402,96,517,775,506,938,114,986,986,503,749,984,524,527,506,749,463,490,188,374,506,49,537,188,494,900,526,524,524,500,500,345,630,338,982,761,700,598,749],
] ]
"""
sep = [291] # name, (start, end), classifier, src_name
rvq_lvl = [256] io_map = {
lang = [264] 'text': [(0, 256), 9, "text_emb.weight"],
'rvq_l': [(256, 264), -1, "rvq_l_emb.weight"],
'lang': [(264, 270), -1, "langs_emb.weight"],
'task': [(270, 279), -1, "tasks_emb.weight"],
'len': [(279, 290), 10, "len_emb.weight"],
'tone': [(290, 291), -1, "tones_emb.weight"],
'sep': [(291, 292), -1, "sep"],
'prom|0': [(292, 1316), -1, "proms_emb.embeddings.0.weight"],
'prom|1': [(1316, 2340), -1, "proms_emb.embeddings.1.weight"],
'prom|2': [(2340, 3364), -1, "proms_emb.embeddings.2.weight"],
'prom|3': [(3364, 4388), -1, "proms_emb.embeddings.3.weight"],
'prom|4': [(4388, 5412), -1, "proms_emb.embeddings.4.weight"],
'prom|5': [(5412, 6436), -1, "proms_emb.embeddings.5.weight"],
'prom|6': [(6436, 7460), -1, "proms_emb.embeddings.6.weight"],
'prom|7': [(7460, 8484), -1, "proms_emb.embeddings.7.weight"],
'resp|AR:0:0': [(8484, 9509), 0, "resps_emb.embeddings.0.weight"],
'resp|NAR:0:1': [(9509, 10533), 1, "resps_emb.embeddings.1.weight"],
'resp|NAR:1:2': [(10533, 11557), 2, "resps_emb.embeddings.2.weight"],
'resp|NAR:2:3': [(11557, 12581), 3, "resps_emb.embeddings.3.weight"],
'resp|NAR:3:4': [(12581, 13605), 4, "resps_emb.embeddings.4.weight"],
'resp|NAR:4:5': [(13605, 14629), 5, "resps_emb.embeddings.5.weight"],
'resp|NAR:5:6': [(14629, 15653), 6, "resps_emb.embeddings.6.weight"],
'resp|NAR:6:7': [(15653, 16677), 7, "resps_emb.embeddings.7.weight"],
'resp|NAR:0:0': [(16677, 17702), 8, "resps_emb.embeddings.8.weight"],
}
for l, codes in enumerate( prom ): mode_lvl_map = {
for i, t in enumerate( codes ): 'AR:0:0': 0,
prom[l][i] += 292 + (1024 * l) 'NAR:0:1': 1,
'NAR:1:2': 2,
'NAR:2:3': 3,
'NAR:3:4': 4,
'NAR:4:5': 5,
'NAR:5:6': 6,
'NAR:6:7': 7,
'NAR:0:0': 0,
'len': 0,
}
for l, codes in enumerate( resp ): embds = {}
for i, t in enumerate( codes ): heads = {}
resp[l][i] += 9509 + (1024 * l) n_embd = 1024
ids = torch.tensor([])
pos_ids = torch.tensor([])
ids = torch.concat([ ids, torch.tensor(phn), torch.tensor(sep) ])
seq = torch.tensor([ _ for _ in range( len(phn) + 1 ) ])
pos_ids = torch.concat([ pos_ids, seq ])
ids = torch.concat([ ids, torch.tensor(lang), torch.tensor(sep) ])
seq = torch.tensor([ _ for _ in range( len(lang) + 1 ) ])
pos_ids = torch.concat([ pos_ids, seq ])
ids = torch.concat([ ids, torch.tensor(rvq_lvl), torch.tensor(sep) ])
seq = torch.tensor([ _ for _ in range( len(rvq_lvl) + 1 ) ])
pos_ids = torch.concat([ pos_ids, seq ])
ids = torch.concat([ ids, torch.tensor(prom[0]), torch.tensor(sep) ])
seq = torch.tensor([ _ for _ in range( len(prom[0]) + 1 ) ])
pos_ids = torch.concat([ pos_ids, seq ])
start, end, stop = (None, None, None)
if mode == "len":
len_seq = [279]
ids = torch.concat([ ids, torch.tensor(len_seq) ])
seq = torch.tensor([ _ for _ in range( len(len_seq) ) ])
pos_ids = torch.concat([ pos_ids, seq ])
start, end, stop = (279, 279+11, 10)
max_n = 10
outputs = 1
elif mode =="ar":
start, end, stop = (8484, 8484+1025, 1024)
max_n = 350
outputs = 1
elif mode =="nar":
ids = torch.concat([ ids, torch.tensor(resp[0]) ])
seq = torch.tensor([ _ for _ in range( len(resp[0]) ) ])
pos_ids = torch.concat([ pos_ids, seq ])
start, end, stop = (9509, 9509+1024, None)
max_n = 1
outputs = len(resp[0])
ids = ids.to(device="cuda", dtype=torch.int32)
pos_ids = pos_ids.to(device="cuda", dtype=torch.int32)
attention_mask = torch.tensor([ True for _ in range( ids.shape[0] ) ], dtype=torch.bool)
n = 0
with torch.no_grad(): with torch.no_grad():
while n < max_n: for k, v in io_map.items():
""" start, end = v[0]
if n == 0: classifier_idx = v[1]
embs = model.model.embed_tokens( ids ) embd_name = v[2]
for i, emb in enumerate( embs ):
print( i, ids[i].item(), sum(emb).item(), pos_ids[i].item() )
"""
out = model(input_ids=ids.unsqueeze(0), position_ids=pos_ids.unsqueeze(0), attention_mask=attention_mask.unsqueeze(0)) if is_from_pretrained:
logits = out.logits[0, -outputs:, start:end] n_vocab = end - start
if mode == "ar": embds[k] = torch.nn.Embedding( n_vocab, n_embd ).to(model.embed_tokens.weight)
tokens = Categorical(logits=logits).sample() embds[k].weight[:] = model.embed_tokens.weight[start:end, :]
if classifier_idx >= 0:
# NAR:0:0 does not have a masked token output
if k == "resp|NAR:0:0":
end -= 1
n_vocab -= 1
heads[k] = torch.nn.Linear( n_embd, n_vocab, bias=False ).to(hf_model.lm_head.weight)
heads[k].weight[:] = hf_model.lm_head.weight[start:end, :]
else: else:
tokens = logits.argmax(dim=-1) embd_weight = state_dict[embd_name].unsqueeze(0) if state_dict[embd_name].dim() == 1 else state_dict[embd_name]
embds[k] = torch.nn.Embedding( embd_weight.shape[0], embd_weight.shape[1] ).to(device=device, dtype=dtype)
embds[k].load_state_dict({ "weight": embd_weight })
n += 1 if classifier_idx >= 0:
head_weight = state_dict[f'classifiers.proj.{classifier_idx}.weight']
print( n, tokens ) heads[k] = torch.nn.Linear( head_weight.shape[1], head_weight.shape[0], bias=False ).to(device=device, dtype=dtype)
heads[k].load_state_dict({ "weight": head_weight })
if outputs == 1: def create_inputs( phn, prom, lang=0, seq=None, mode="AR:0:0" ):
if stop in tokens: rvq_l = mode_lvl_map[mode]
inputs = torch.tensor([])
pos_ids = torch.tensor([])
attn_mask = torch.tensor([])
seqs = []
phn = torch.tensor(phn, device=device,dtype=torch.int32)
prom = torch.tensor(prom, device=device,dtype=torch.int32)
lang = torch.tensor([lang], device=device,dtype=torch.int32)
rvq_l = torch.tensor([rvq_l], device=device,dtype=torch.int32)
zero = torch.tensor([0], device=device,dtype=torch.int32)
if mode == "len":
seq = zero if not seq else torch.concat([zero, torch.tensor(seq, device=device, dtype=torch.int32)])
elif seq:
seq = torch.tensor(seq, device=device,dtype=torch.int32)
seq = seq[:rvq_l, :] if rvq_l > 0 else seq
sep_embd = embds["sep"](zero)
phn_embd = embds["text"](phn)
rvq_l_embd = embds["rvq_l"](rvq_l)
lang_embd = embds["lang"](lang)
prom_embd = torch.zeros(prom.shape[-1], n_embd, device=device, dtype=dtype)
seq_embd = None
for i, p in enumerate(prom):
if i > rvq_l:
break
prom_embd += embds[f"prom|{i}"](p)
if seq is not None:
if mode == "len":
seq_embd = embds["len"](seq)
elif mode == "AR:0:0":
seq_embd = embds["resp|AR:0:0"](seq)
else:
seq_embd = torch.zeros(seq.shape[-1], n_embd, device=device, dtype=dtype)
for i, r in enumerate(seq):
seq_embd += embds[f"resp|NAR:{i}:{i+1}"](r)
seqs.append(torch.concat([phn_embd, sep_embd]))
seqs.append(torch.concat([lang_embd, sep_embd]))
seqs.append(torch.concat([rvq_l_embd, sep_embd]))
seqs.append(torch.concat([prom_embd, sep_embd]))
if seq_embd is not None:
seqs.append(seq_embd)
inputs = torch.concat(seqs)
pos_ids = torch.tensor([ i for seq in seqs for i, _ in enumerate(seq) ], device=device, dtype=torch.int32)
attn_mask = torch.tensor([ True for seq in seqs for i, _ in enumerate(seq) ], device=device, dtype=torch.bool)
return inputs, pos_ids, attn_mask
def generate( phn, prom, sequence=[], mode="resp|AR:0:0", max_tokens = 75 * 4, temperature = 1.0 ):
lm_head = heads[mode]
model._update_causal_mask = model._original_update_causal_mask
n_outputs = 1
stop_token = 1024
if mode == "len":
temperature = 0.0
max_tokens = 5
stop_token = 10
elif mode != "resp|AR:0:0":
temperature = 0.0
max_tokens = len(sequence)+1
n_outputs = len(sequence[0])
model._update_causal_mask = model._update_noncausal_mask
while len(sequence) < max_tokens:
inputs, pos_ids, attn_mask = create_inputs( phn, prom, seq=sequence, mode=mode.split("|")[-1] )
out = model(inputs_embeds=inputs.unsqueeze(0), position_ids=pos_ids.unsqueeze(0), attention_mask=attn_mask.unsqueeze(0))
logits = lm_head(out[0]).float()
logits = logits[0, -n_outputs:, :]
t = Categorical(logits=logits / temperature).sample() if temperature > 0 else logits.argmax(dim=-1)
if n_outputs > 1:
sequence.append([ _.item() for _ in t ])
break
else:
t = t[0]
if stop_token in t:
break break
sequence.append(t.item())
return sequence
ids = torch.concat( [ ids, tokens + start ] ) # check embds
pos_ids = torch.concat( [ pos_ids, torch.tensor([n]).to(pos_ids) ] ) if False:
attention_mask = torch.concat([ attention_mask, torch.tensor([True]).to(attention_mask) ]) inputs, pos_ids, attn_mask = create_inputs( phn, prom, mode="len" )
flattened = [ sum(embd).item() for embd in inputs ]
print( out ) for i, embd in enumerate( flattened ):
print( ids ) print(f'{i}: ', pos_ids[i].item(), "\t", embd )
print( pos_ids )
# test len inferencing
print( "len:", generate( phn, prom, mode="len" ) )
# test ar ouptut
if resp:
resp = [ resp[0] ]
else:
resp = [ generate( phn, prom ) ]
print( "AR:", resp )
# test nar ouptut
for i in range(1, 8):
resp = generate( phn, prom, sequence=resp, mode=f"resp|NAR:{i-1}:{i}" )
print( f"NAR:{i-1}:{i}: ", resp[-1] )
decode_to_file( torch.tensor(resp, dtype=torch.int16, device=device).t(), "./data/test.wav" )

View File

@ -4,7 +4,7 @@ INCS += -I./include
LIBS += -L./libs LIBS += -L./libs
LINKS += -lggml -lggml-base -lllama -lencodec LINKS += -lggml -lggml-base -lllama -lencodec
FLAGS += -g FLAGS += -march=native -O3
SRCS := $(shell find ./ -name "*.cpp") SRCS := $(shell find ./ -name "*.cpp")
OBJS += $(patsubst %.cpp,%.o,$(SRCS)) OBJS += $(patsubst %.cpp,%.o,$(SRCS))

View File

@ -187,8 +187,8 @@ void VALL_E_API batch_add( llama_batch& batch, llama_token id, int n_embd, const
// insert raw embedding instead // insert raw embedding instead
if ( embds ) { if ( embds ) {
// signals to not map the embedding from the array // signals to not map the embedding from the array
if ( id < 0 ) for ( auto i = 0; i < n_embd; ++i ) batch.embd[batch.n_tokens + i] = embds[i]; if ( id < 0 ) for ( auto i = 0; i < n_embd; ++i ) batch.embd[batch.n_tokens * n_embd + i] = embds[i];
else for ( auto i = 0; i < n_embd; ++i ) batch.embd[batch.n_tokens + i] = embds[id * n_embd + i]; else for ( auto i = 0; i < n_embd; ++i ) batch.embd[batch.n_tokens * n_embd + i] = embds[id * n_embd + i];
// insert token (never gets used here) // insert token (never gets used here)
} else { } else {
batch.token[batch.n_tokens] = id; batch.token[batch.n_tokens] = id;
@ -267,33 +267,29 @@ std::vector<std::vector<int32_t>> VALL_E_API encode_audio_from_disk( struct enco
int n_codebooks = 8; int n_codebooks = 8;
int n_frames = n_codes / n_codebooks; int n_frames = n_codes / n_codebooks;
std::vector<int32_t> flattened_codes(codes_data, codes_data + n_codes); std::vector<std::vector<int32_t>> res(n_codebooks);
std::vector<std::vector<int32_t>> codes_2ds(8);
for ( auto l = 0; l < n_codebooks; ++l ) { for ( auto l = 0; l < n_codebooks; ++l ) {
codes_2ds[l].resize( n_frames ); res[l].insert( res[l].end(), codes_data + (l * n_frames), codes_data + ((l+1) * n_frames) );
for ( auto i = 0; i < n_frames; ++i ) {
codes_2ds[l][i] = flattened_codes[i + l * n_codebooks];
}
} }
return codes_2ds; return res;
} }
// decodes a 2D codebook into a waveform // decodes a 2D codebook into a waveform
std::vector<float> VALL_E_API decode_audio( struct encodec_context* ectx, const std::vector<std::vector<int32_t>>& codes_2d ) { std::vector<float> VALL_E_API decode_audio( struct encodec_context* ectx, const std::vector<std::vector<int32_t>>& codes ) {
int n_codebooks = codes_2d.size(); int n_codebooks = codes.size();
int n_frames = codes_2d[0].size(); int n_frames = codes[0].size();
std::vector<int32_t> codes( n_frames * n_codebooks );
std::vector<int32_t> res;
res.reserve(n_frames * n_codebooks);
for ( auto l = 0; l < n_codebooks; ++l ) { for ( auto l = 0; l < n_codebooks; ++l ) {
for ( auto i = 0; i < n_frames; ++i ) { print_tokens( codes[l] );
codes[i + l * n_codebooks] = codes_2d[l][i]; res.insert( res.end(), codes[l].begin(), codes[l].end() );
}
} }
// decompress audio // decompress audio
if (!encodec_decompress_audio(ectx, codes.data(), codes.size(), 1)) { if (!encodec_decompress_audio(ectx, res.data(), res.size(), N_THREADS)) {
fprintf(stderr, "%s: error during decompression\n", __func__); fprintf(stderr, "%s: error during decompression\n", __func__);
return {}; return {};
} }
@ -306,9 +302,11 @@ std::vector<float> VALL_E_API decode_audio( struct encodec_context* ectx, const
// sums embeddings over a 2D "tensor" // sums embeddings over a 2D "tensor"
std::vector<std::vector<float>> VALL_E_API sum_embeddings( const std::vector<std::vector<llama_token>>& input, int n_embd, int rvq_l, const float** embds, int mode ) { std::vector<std::vector<float>> VALL_E_API sum_embeddings( const std::vector<std::vector<llama_token>>& input, int n_embd, int rvq_l, const float** embds, int mode ) {
std::vector<std::vector<float>> res( input.size() ); auto n_tokens = input[0].size();
res.resize( input[0].size() ); //auto n_embd = input[0].size();
for ( auto& e : res ) e.resize( n_embd );
std::vector<std::vector<float>> res( n_tokens, std::vector<float>( n_embd, 0.0 ) );
// iterate through rvq levels (only up to inclusive the target rvq level) // iterate through rvq levels (only up to inclusive the target rvq level)
for ( auto l = 0; l < input.size() && l <= rvq_l; ++l ) { for ( auto l = 0; l < input.size() && l <= rvq_l; ++l ) {
int offset = 0; int offset = 0;
@ -318,16 +316,13 @@ std::vector<std::vector<float>> VALL_E_API sum_embeddings( const std::vector<std
} else if ( mode == EMBEDDING_MODE_RESP_NAR_LEN ) { } else if ( mode == EMBEDDING_MODE_RESP_NAR_LEN ) {
offset = input.size() == 1 ? 8 : 1; offset = input.size() == 1 ? 8 : 1;
} }
// get tokens
auto& tokens = input[l];
// get output buffer
auto& summed = res[l];
// embed the current level's tokens // embed the current level's tokens
auto embedded = map_embeddings( input[l], n_embd, embds[l + offset] ); auto embedded = map_embeddings( input[l], n_embd, embds[l + offset] );
// iterate through embedded tokens
for ( auto i = 0; i < tokens.size(); ++i ) { for ( auto idx = 0; idx < n_tokens; ++idx ) {
// sum with buffer for ( auto embd_idx = 0; embd_idx < n_embd; ++embd_idx ) {
for ( auto j = 0; j < n_embd; ++j ) summed[j] += embedded[i][j]; res[idx][embd_idx] += embedded[idx][embd_idx];
}
} }
} }
return res; return res;
@ -414,7 +409,7 @@ void VALL_E_API fill_batch( llama_batch& batch, input_t& input, io_map_t& io_map
// insert prom tokens // insert prom tokens
auto summed_proms_embds = sum_embeddings( input.prom, n_embd, input.rvq_l, prom_embds ); auto summed_proms_embds = sum_embeddings( input.prom, n_embd, input.rvq_l, prom_embds );
for ( auto i = 0; i < summed_proms_embds.size(); ++i ) { for ( auto i = 0; i < summed_proms_embds.size(); ++i ) {
batch_add( batch, -1, n_embd, &summed_proms_embds[i][0], pos++, false ); batch_add( batch, -1, n_embd, summed_proms_embds[i].data(), pos++, false );
} }
batch_add( batch, 0, n_embd, sep_embds, pos++, mode == INFERENCE_MODE_AR ); // set as the last logit if AR batch_add( batch, 0, n_embd, sep_embds, pos++, mode == INFERENCE_MODE_AR ); // set as the last logit if AR
pos = 0; pos = 0;
@ -436,7 +431,7 @@ void VALL_E_API fill_batch( llama_batch& batch, input_t& input, io_map_t& io_map
} }
// generation code, should handle all modalities easily // generation code, should handle all modalities easily
std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* model, llama_sampler* smpl, input_t& input, io_map_t& io_map, int max_tokens, int mode, bool verbose ) { std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* model, input_t& input, io_map_t& io_map, int max_tokens, int mode, bool verbose ) {
bool causal = true; // sample autoregressively or not bool causal = true; // sample autoregressively or not
int n_outputs = 0; // number of output tokens to expect int n_outputs = 0; // number of output tokens to expect
@ -504,6 +499,15 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
// if INFERENCE_MODE_AR || INFERENCE_MODE_LEN // if INFERENCE_MODE_AR || INFERENCE_MODE_LEN
if ( causal ) { if ( causal ) {
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(0));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (1.0));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (LLAMA_DEFAULT_SEED));
output_tokens.reserve(max_tokens); output_tokens.reserve(max_tokens);
while ( output_tokens.size() < max_tokens ) { while ( output_tokens.size() < max_tokens ) {
if ( llama_decode(ctx, batch) ) { if ( llama_decode(ctx, batch) ) {
@ -527,6 +531,8 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
if ( verbose ) print_tokens( output_tokens ); if ( verbose ) print_tokens( output_tokens );
} }
llama_sampler_free(smpl);
} else if ( mode == INFERENCE_MODE_NAR_DEMASK ) { } else if ( mode == INFERENCE_MODE_NAR_DEMASK ) {
// to-do: assert n_outputs == input.resp[rvq_l-1].size() // to-do: assert n_outputs == input.resp[rvq_l-1].size()
const llama_token MASK_TOKEN = 1024; // token value for masking const llama_token MASK_TOKEN = 1024; // token value for masking
@ -577,6 +583,7 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
std::vector<score_t> sorted_scores( n_outputs ); std::vector<score_t> sorted_scores( n_outputs );
for ( auto i = 0; i < n_outputs; ++i ) sorted_scores[i] = { i, scores[i] }; for ( auto i = 0; i < n_outputs; ++i ) sorted_scores[i] = { i, scores[i] };
std::sort(sorted_scores.begin(), sorted_scores.end()); std::sort(sorted_scores.begin(), sorted_scores.end());
std::reverse(sorted_scores.begin(), sorted_scores.end());
// and top-k pick the worst scores // and top-k pick the worst scores
for ( auto i = 0; i < n_masked_tokens; ++i ) { for ( auto i = 0; i < n_masked_tokens; ++i ) {
@ -619,10 +626,10 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
sparams.no_perf = false; sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(0)); llama_sampler_chain_add(smpl, llama_sampler_init_top_k(20));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1)); llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (sampling_temperature)); llama_sampler_chain_add(smpl, llama_sampler_init_temp (sampling_temperature));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1130)); llama_sampler_chain_add(smpl, llama_sampler_init_dist (LLAMA_DEFAULT_SEED));
auto* logits = llama_get_logits( ctx ); auto* logits = llama_get_logits( ctx );
@ -636,7 +643,6 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
for ( auto idx = 0; idx < n_outputs; ++idx ) { for ( auto idx = 0; idx < n_outputs; ++idx ) {
// skip if not masked // skip if not masked
if ( !is_masked[idx] ) { if ( !is_masked[idx] ) {
scores[idx] = 1.0f;
continue; continue;
} }
@ -655,7 +661,7 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
// store token if it was masked // store token if it was masked
output_tokens[idx] = t; output_tokens[idx] = t;
// update score if it was masked // update score if it was masked
scores[idx] = softmaxed[t]; // invert so we pick the worst tokens later scores[idx] = 1.0f - softmaxed[t]; // invert so we pick the worst tokens later
} }
llama_sampler_free(smpl); llama_sampler_free(smpl);
@ -677,10 +683,10 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
sparams.no_perf = false; sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(1)); llama_sampler_chain_add(smpl, llama_sampler_init_top_k(20));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1)); llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (1.0)); llama_sampler_chain_add(smpl, llama_sampler_init_temp (1.0));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1130)); llama_sampler_chain_add(smpl, llama_sampler_init_dist (LLAMA_DEFAULT_SEED));
for ( auto idx = 0; idx < n_outputs; ++idx ) { for ( auto idx = 0; idx < n_outputs; ++idx ) {
// sample ith token // sample ith token
@ -702,7 +708,6 @@ std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* m
__func__, output_tokens.size(), (t_main_end - t_main_start) / 1000000.0f, output_tokens.size() / ((t_main_end - t_main_start) / 1000000.0f)); __func__, output_tokens.size(), (t_main_end - t_main_start) / 1000000.0f, output_tokens.size() / ((t_main_end - t_main_start) / 1000000.0f));
fprintf(stderr, "\n"); fprintf(stderr, "\n");
llama_perf_sampler_print(smpl);
llama_perf_context_print(ctx); llama_perf_context_print(ctx);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
@ -721,7 +726,16 @@ int main( int argc, char** argv ) {
// input.phonemes = "hˈɛloː ʋˈɔrlt"; // input.phonemes = "hˈɛloː ʋˈɔrlt";
input.phn = {1,22,111,100,4,37,115,169,11,2}; // <bos>hˈɛloː ʋˈɔrlt</eos> input.phn = {1,22,111,100,4,37,115,169,11,2}; // <bos>hˈɛloː ʋˈɔrlt</eos>
input.prom = {}; input.prom = {
{62,835,835,835,339,395,798,537,537,537,537,222,76,989,548,65,705,375,261,375,297,503,529,571,707,346,266,862,148,496,574,115,115,438,934,339,865,876,63,40,779,461,602,794,10,220,507,869,639,705,869,917,705,893,917,705,869,938,439,175,139,506,375,529,297,705,651,238,962,461,195,441,377,581,473,795,644,626,459,981,767,670,696,73,779,257,738,1017,1019,133,133,1017,835,604,699,626,67,92,707,92,179,179,772,869,441,799,630,238,745,904,904,904,106,133,133,1017,1017,395,883,87,519,594,1002,682,996,540,186,855,430,202,347,889,61,92,542,297,67,669,571,707,346,67,359,571,707,669,604,395,1008,810,35,621,67,600,333,123,284,568,817,243,778,464,638,610,359,538,464,975,321,700,377,484,179,284,284,621,538,464,745,171,171,159,744,744,287,461,69,15,529,67,92,669,464,515,605,24,822,865,293,865,172,638,359,562,138,839,846,775,556,775,1006,917,346,312,148,331,496,646,67,314,15,705,131,855,662,287,172,85,107,519,374,450,391,609,643,778,80,287,794,794,115,785,794,461,699,519,932,522,652,262,508,902,932,932,391,769,18,507,90,442,762,610,610,669,605,35,855,56,989,863,195,464,604,257,904,632,786,951,461,239,195,878,771,146,481,146,481,434,643,917,280,67,464,115,744,744,115,115,115,819,709,63,907,359,519,996,616,682,996,616,519,762,917,841,772,568,954,600,422,893,592,464,626,86,143,615,171,744,744,196,115,821,415,521,799,654,839,644,473,592,953,523,855,738,855,855,876,1017,63,329},
{913,859,740,740,937,601,961,961,877,747,747,559,474,618,20,316,58,316,180,112,290,869,610,869,869,943,127,153,236,794,282,857,984,196,875,648,993,913,860,616,38,833,620,133,123,992,247,367,252,50,298,27,27,631,163,784,271,20,843,514,869,258,180,66,803,281,123,493,831,102,556,992,385,122,31,251,990,827,26,347,460,43,43,460,228,43,841,913,302,544,544,277,859,404,646,775,315,848,726,185,203,314,203,174,252,174,378,954,214,993,924,809,277,765,363,544,363,518,791,185,454,193,193,193,193,193,573,977,924,76,434,56,193,962,610,24,954,459,396,112,903,137,398,474,506,791,839,399,102,25,205,792,459,474,526,817,869,192,792,593,878,506,24,410,539,788,522,667,566,584,588,992,444,24,869,925,635,393,903,742,320,1023,833,136,216,924,220,24,563,630,968,96,708,24,708,127,399,364,67,740,381,981,203,248,607,744,252,996,474,582,248,527,423,25,387,94,229,775,122,474,792,367,650,371,413,448,448,784,506,795,848,298,27,526,96,905,70,693,956,1002,1002,37,747,857,993,124,193,193,193,193,732,732,732,992,447,792,929,291,289,524,451,27,27,524,202,693,374,1002,125,732,585,367,317,679,395,413,189,493,386,650,110,912,505,384,399,851,367,367,27,230,988,810,975,842,956,1002,4,551,729,956,1002,750,648,231,950,193,96,912,410,732,539,103,193,904,491,213,792,792,998,193,399,151,410,96,673,497,1002,241,833,956,630,43,399,775,732,792,792,792,792,917,750,185,812,812,700,859,841,363,833,630},
{786,36,821,937,1000,705,1016,345,345,470,165,581,95,404,95,95,1006,477,95,95,691,254,997,657,176,124,95,673,489,326,218,437,907,590,752,541,1016,821,445,563,181,555,181,345,576,190,987,0,265,997,488,12,598,687,152,108,52,95,95,71,87,945,95,997,754,488,955,694,925,82,18,1020,1006,542,788,441,325,532,246,132,560,532,947,655,653,842,732,36,36,829,36,937,989,989,752,651,87,489,677,260,789,462,95,227,986,955,95,810,624,435,280,868,832,879,863,821,829,937,168,270,489,544,909,562,957,0,593,714,675,690,626,227,794,489,489,563,489,298,269,741,249,516,360,240,516,336,93,808,1022,682,555,737,147,405,476,895,323,694,412,689,963,72,193,298,181,521,741,193,93,153,773,677,689,495,30,564,719,1020,559,940,53,53,53,929,360,971,403,1012,997,919,957,433,919,787,401,401,355,276,370,414,690,697,330,629,552,930,720,259,579,221,62,945,135,1020,626,663,401,153,997,381,830,185,587,853,207,126,66,529,410,113,997,488,431,563,488,488,719,746,790,296,843,752,790,23,984,292,41,27,120,249,124,900,358,801,227,978,95,997,997,997,371,561,86,388,52,667,601,894,545,997,498,900,494,365,852,986,95,841,664,256,18,1020,963,901,447,498,262,388,691,997,646,651,757,468,114,601,437,940,212,655,541,970,870,521,237,957,563,794,563,564,620,489,351,489,489,257,733,629,489,227,622,962,7,598,374,470,114,159,211,298,363,843,818,153,59,452,529,258,419,605,689,526,39,982,829,982,752,678,1005,312},
{673,673,919,866,762,961,52,674,528,528,675,526,12,753,297,967,661,845,482,303,338,1021,506,445,247,214,206,94,434,799,210,885,552,695,853,1022,916,762,764,721,445,434,529,999,771,708,767,498,282,736,227,150,299,12,536,767,321,561,12,530,147,530,262,325,196,990,874,997,944,875,426,12,282,571,571,282,365,534,365,424,89,388,563,222,31,1019,624,74,215,651,1018,74,956,1022,74,18,633,350,72,448,454,769,267,938,12,534,929,723,829,614,505,364,1018,1014,838,673,919,74,223,761,266,78,177,736,20,718,425,1001,366,58,874,58,153,627,312,197,801,530,767,674,196,633,327,425,376,413,1019,209,594,383,744,458,468,711,282,885,640,435,655,571,556,1020,310,116,273,116,504,633,15,736,633,448,662,612,487,345,19,612,665,556,198,778,705,403,706,31,196,197,536,805,427,339,161,241,116,504,58,945,853,734,670,424,807,19,397,175,144,419,19,221,697,68,321,800,210,824,972,712,911,362,427,694,182,651,972,863,684,887,548,806,27,627,639,432,193,103,198,436,837,366,212,125,1001,493,874,808,17,17,127,204,530,300,345,425,246,240,640,906,340,310,633,246,774,114,633,522,777,874,494,577,353,939,571,693,857,722,530,521,354,492,735,214,806,483,736,530,118,234,536,177,132,522,349,259,436,973,528,414,224,762,212,854,744,271,568,127,323,736,304,499,499,78,536,736,805,232,126,468,566,611,52,339,450,258,157,602,594,854,602,599,82,124,472,563,666,174,936,818,66,758,627,52,350,999,734,215,919,1018,874,885},
{528,448,646,190,222,884,939,907,907,673,413,786,527,517,710,449,119,531,565,762,531,501,522,246,162,871,8,594,206,937,462,712,862,151,103,261,882,990,1007,314,683,864,693,812,319,786,107,531,31,342,632,460,269,429,531,531,717,417,321,671,1015,152,467,863,285,875,941,417,475,825,596,957,117,460,162,162,117,630,735,527,272,558,38,39,605,375,39,900,862,646,712,804,622,963,407,93,828,796,306,415,70,667,371,531,1000,411,710,162,812,381,673,498,691,884,928,712,528,48,630,24,593,901,973,579,722,75,139,909,919,328,764,393,777,753,512,577,175,577,512,922,834,863,30,69,94,68,616,691,835,335,486,345,306,374,732,938,580,311,715,495,527,1008,306,369,663,512,369,320,360,80,42,1021,1021,1021,175,568,526,362,320,317,488,613,937,548,966,545,596,177,306,480,522,577,512,512,638,1008,82,100,696,89,714,531,639,460,679,718,492,509,492,624,460,572,531,306,19,473,915,558,285,319,713,1018,381,877,667,425,905,43,437,632,634,324,306,207,324,303,48,69,467,39,902,599,3,617,465,78,918,459,1009,427,751,145,531,349,356,1021,157,507,780,624,165,507,144,270,94,414,899,379,947,994,853,107,586,652,877,92,19,91,188,544,624,470,503,513,13,192,563,145,531,618,743,470,62,701,499,436,679,505,198,959,3,766,839,437,491,395,1021,512,306,512,356,851,1021,1021,78,690,856,735,286,280,4,1008,369,359,309,651,864,561,170,692,952,877,520,959,306,37,1021,31,236,162,773,522,254,446,606,691,804,882,58,974},
{1011,939,881,881,140,937,724,724,937,1011,381,229,965,251,745,69,305,206,566,813,503,116,940,127,353,621,57,779,595,744,755,530,701,862,760,443,293,768,156,281,960,504,327,979,55,790,545,953,830,759,667,485,861,63,485,55,898,581,520,49,99,651,940,945,685,621,728,487,650,530,934,378,522,522,522,996,534,522,739,534,378,543,94,602,390,948,692,692,41,41,768,412,982,692,692,774,176,791,526,497,57,940,542,685,694,916,813,890,357,193,430,863,929,412,412,903,140,763,465,707,569,925,859,985,24,411,835,298,293,791,837,460,182,296,137,474,809,111,376,1021,111,490,111,938,542,578,477,506,57,385,300,873,240,104,667,204,515,834,24,125,113,980,111,997,859,997,376,193,490,824,511,799,719,575,451,575,251,222,630,429,920,788,300,993,641,154,816,940,618,130,940,462,823,955,1001,569,508,632,2,903,399,333,709,489,726,932,725,777,970,843,717,940,211,534,274,161,392,103,31,462,813,985,638,213,352,219,236,381,287,111,87,818,953,112,336,980,1016,72,960,426,238,60,9,487,665,129,24,24,162,312,411,111,157,473,466,222,940,341,55,457,712,179,451,111,831,918,826,814,940,30,468,240,207,389,923,186,95,300,876,679,576,543,582,111,227,312,112,545,747,378,165,158,610,601,425,238,704,630,124,644,949,982,297,868,569,24,57,465,24,859,111,24,752,775,24,647,465,495,57,24,57,227,907,296,581,843,1013,514,555,319,937,347,478,186,684,15,241,534,369,381,846,578,314,711,814,435,41,986,673,991},
{485,748,562,562,485,380,834,997,78,963,755,142,978,135,362,421,217,79,530,1012,972,946,127,587,838,818,456,548,424,479,944,650,694,447,391,616,938,908,206,259,998,292,818,128,353,273,566,796,333,146,110,986,571,451,166,229,421,300,911,689,329,145,287,273,542,808,301,491,0,278,825,442,0,100,818,826,66,904,642,566,135,305,999,993,905,485,755,782,365,977,485,1015,570,1002,755,169,967,36,721,1019,273,931,273,166,216,31,346,946,32,290,362,828,464,748,782,1002,1015,755,1014,100,315,777,549,177,882,110,603,975,531,608,67,1011,950,465,368,416,798,941,635,602,553,300,200,644,498,325,786,734,342,222,403,1,716,175,899,273,40,333,999,74,54,644,408,976,407,631,577,338,435,612,333,273,162,709,882,555,384,995,173,459,442,72,72,200,72,711,219,282,716,442,431,801,976,130,622,72,582,384,516,772,0,440,1001,249,1,953,65,945,438,249,511,561,205,507,821,998,427,746,290,544,426,693,999,190,214,167,219,534,166,325,975,414,326,326,268,679,991,418,868,445,632,160,380,890,346,315,806,258,806,486,326,797,471,18,790,33,66,63,66,224,38,599,599,110,801,761,18,936,230,253,171,393,774,887,887,403,466,495,524,261,666,256,687,759,263,713,185,454,242,988,185,161,911,430,86,550,439,327,527,671,782,383,916,590,315,806,583,465,785,321,315,421,856,66,352,0,634,540,362,948,185,16,224,372,694,259,648,87,733,659,603,67,269,901,66,566,173,705,746,566,911,10,743,860,78,782,1002,755,389,175},
{948,948,975,975,948,322,672,639,902,55,916,439,498,389,407,682,451,401,386,440,499,348,736,891,603,762,783,407,886,76,543,699,137,458,639,253,63,475,55,436,502,888,542,131,524,167,738,131,907,29,378,545,227,382,478,399,218,872,917,202,330,2,371,264,667,355,1016,768,590,408,463,542,214,202,715,891,840,297,509,689,290,439,672,714,528,940,1019,534,975,475,1019,835,975,558,975,981,330,635,96,858,606,627,367,191,191,669,40,873,359,267,701,426,210,1012,899,975,475,1012,610,6,300,749,231,616,877,631,720,574,551,398,503,789,684,664,390,277,150,990,823,190,971,903,175,863,316,965,988,988,800,612,336,506,242,847,389,939,415,202,83,317,2,153,365,363,57,2,891,965,300,754,763,426,555,621,303,415,367,902,829,741,119,380,902,25,884,439,822,49,76,760,566,316,249,555,774,955,834,309,859,173,935,812,682,586,141,606,197,131,644,631,913,586,202,117,810,884,76,592,754,531,586,925,649,583,145,816,821,283,871,1017,316,377,646,339,201,76,780,76,976,217,38,598,977,617,825,833,49,231,749,749,633,205,231,271,50,249,684,555,982,526,895,288,22,57,722,996,260,1018,110,833,644,738,648,468,798,297,769,282,197,402,465,510,194,930,182,909,749,986,187,187,917,38,38,985,985,988,815,878,814,459,237,768,781,649,683,749,934,729,463,181,625,231,917,96,499,839,720,439,842,205,808,338,617,681,326,446,905,346,647,533,49,728,147,432,846,536,586,611,49,879,872,893,859,859,961,989,975,701,495,65},
};
input.resp = {}; input.resp = {};
std::string vall_e_model_path = "./data/vall_e.gguf"; std::string vall_e_model_path = "./data/vall_e.gguf";
@ -747,6 +761,8 @@ int main( int argc, char** argv ) {
ctx_params.n_ctx = CTX_SIZE; ctx_params.n_ctx = CTX_SIZE;
ctx_params.n_batch = CTX_SIZE; ctx_params.n_batch = CTX_SIZE;
ctx_params.n_ubatch = CTX_SIZE; ctx_params.n_ubatch = CTX_SIZE;
ctx_params.n_threads = N_THREADS;
ctx_params.n_threads_batch = N_THREADS;
ctx_params.no_perf = false; ctx_params.no_perf = false;
ctx_params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; ctx_params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL;
@ -757,6 +773,7 @@ int main( int argc, char** argv ) {
} }
// initialize the sampler // initialize the sampler
/*
auto sparams = llama_sampler_chain_default_params(); auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false; sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler * smpl = llama_sampler_chain_init(sparams);
@ -764,7 +781,9 @@ int main( int argc, char** argv ) {
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(0)); llama_sampler_chain_add(smpl, llama_sampler_init_top_k(0));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1)); llama_sampler_chain_add(smpl, llama_sampler_init_top_p(1.0, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (1.0)); llama_sampler_chain_add(smpl, llama_sampler_init_temp (1.0));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1130)); llama_sampler_chain_add(smpl, llama_sampler_init_dist (LLAMA_DEFAULT_SEED));
*/
struct encodec_context* ectx = encodec_load_model(encodec_model_path.c_str(), 0, ngl); struct encodec_context* ectx = encodec_load_model(encodec_model_path.c_str(), 0, ngl);
if (!ectx) { if (!ectx) {
@ -781,9 +800,6 @@ int main( int argc, char** argv ) {
} }
//input.resp = encode_audio_from_disk(ectx, output_response_path); //input.resp = encode_audio_from_disk(ectx, output_response_path);
// prepare batch
auto n_embd = llama_n_embd( model );
auto n_vocab = llama_n_vocab( model );
// grab input embeddings // grab input embeddings
vall_e_inputs_map_init( io_map, model ); vall_e_inputs_map_init( io_map, model );
@ -803,6 +819,26 @@ int main( int argc, char** argv ) {
printf("\n"); printf("\n");
} }
// check for embds
/*
{
input.task = "len";
printf("batch init\n");
llama_batch batch = llama_batch_init( CTX_SIZE, io_map.n_embd, CTX_SIZE );
printf("fill init\n");
fill_batch( batch, input, io_map, INFERENCE_MODE_LEN );
printf("filled init\n");
for ( auto i = 0; i < batch.n_tokens; ++i ) {
float summed = 0;
for ( auto j = 0; j < 1024; ++j ) {
summed += batch.embd[i * 1024 + j];
}
printf("%i: \t%i \t%f\n", i, batch.pos[i], summed);
}
}
*/
// inference // inference
std::vector<llama_token> output_tokens; std::vector<llama_token> output_tokens;
// NAR-len demasking // NAR-len demasking
@ -811,29 +847,36 @@ int main( int argc, char** argv ) {
int len = 0; int len = 0;
if ( !len ) { if ( !len ) {
input.task = "len"; input.task = "len";
output_tokens = generate( ctx, model, smpl, input, io_map, 5, INFERENCE_MODE_LEN ); output_tokens = generate( ctx, model, input, io_map, 5, INFERENCE_MODE_LEN );
{ {
int digit = 1; int digit = 1;
for (int i = output_tokens.size() - 1; i >= 0; i--) { for (auto it = output_tokens.rbegin(); it < output_tokens.rend(); ++it) {
len += output_tokens[i] * digit; len += (*it) * digit;
digit *= 10; digit *= 10;
} }
} }
// cap for now // cap for now
if ( len <= 0 || len > MAX_DURATION ) len = MAX_DURATION; if ( len <= 0 || len > MAX_DURATION ) len = MAX_DURATION;
} }
// fill with mask tokens // fill with mask tokens
input.resp.resize(1); input.resp.resize(1);
for ( auto i = 0; i < len; ++i ) { for ( auto i = 0; i < len; ++i ) {
input.resp[0].emplace_back( 1024 ); // fill with masked tokens input.resp[0].emplace_back( 1024 ); // fill with masked tokens
} }
/*
input.resp = {
{922,738,461,341,341,10,416,416,416,416,346,346,346,346,346,484,484,484,484,484,484,333,442,442,359,359,359,459,459,975,975,626,626,626,626,626,610,359,359,359,359,359,359,359,359,359,610,610,442,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,90,638,638,638,638,975,975,672,875,63,144},
// {993,700,384,213,794,10,305,778,58,225,118,260,768,768,260,474,903,732,70,992,447,70,1000,665,848,379,485,934,181,795,438,298,688,324,934,756,395,795,110,328,343,172,768,871,593,355,396,783,24,24,911,20,27,562,697,616,668,27,27,755,20,505,248,79,822,461,197,156,27,492,151,1013,669,669,562},
// {626,989,936,488,511,624,997,112,112,648,210,650,563,650,41,41,490,920,977,986,920,927,131,167,167,968,346,168,167,168,120,355,766,599,712,390,558,810,948,332,332,867,994,346,955,392,920,452,576,346,52,254,52,307,897,307,968,920,167,563,167,167,167,968,167,488,968,488,1001,938,563,741,432,566,758},
// {916,874,798,212,496,751,620,616,982,745,975,890,890,141,141,321,321,214,899,42,151,722,310,971,774,35,627,995,27,43,248,248,595,774,942,352,810,35,384,340,654,639,89,214,737,197,657,45,622,321,337,19,483,679,938,938,682,938,938,141,938,310,114,724,116,327,372,607,607,310,204,713,762,853,853},
};
*/
// inference NAR-len 0 // inference NAR-len 0
input.task = "tts"; input.task = "tts";
for ( auto l = 0; l < 8; ++l ) { for ( auto l = 0; l < 8; ++l ) {
input.rvq_l = l; input.rvq_l = l;
output_tokens = generate( ctx, model, smpl, input, io_map, 5, l == 0 ? INFERENCE_MODE_NAR_DEMASK : INFERENCE_MODE_NAR ); output_tokens = generate( ctx, model, input, io_map, 5, l == 0 ? INFERENCE_MODE_NAR_DEMASK : INFERENCE_MODE_NAR );
if ( l == 0 ) input.resp.clear(); if ( l == 0 ) input.resp.clear();
input.resp.emplace_back( output_tokens ); input.resp.emplace_back( output_tokens );
} }
@ -842,7 +885,7 @@ int main( int argc, char** argv ) {
input.task = "tts"; input.task = "tts";
for ( auto l = 0; l < 8; ++l ) { for ( auto l = 0; l < 8; ++l ) {
input.rvq_l = l; input.rvq_l = l;
output_tokens = generate( ctx, model, smpl, input, io_map, l == 0 ? MAX_DURATION : 1, l == 0 ? INFERENCE_MODE_AR : INFERENCE_MODE_NAR ); output_tokens = generate( ctx, model, input, io_map, l == 0 ? MAX_DURATION : 1, l == 0 ? INFERENCE_MODE_AR : INFERENCE_MODE_NAR );
input.resp.emplace_back( output_tokens ); input.resp.emplace_back( output_tokens );
} }
} }
@ -854,8 +897,6 @@ int main( int argc, char** argv ) {
// cleanup // cleanup
encodec_free(ectx); encodec_free(ectx);
llama_sampler_free(smpl);
llama_free(ctx); llama_free(ctx);
llama_free_model(model); llama_free_model(model);

View File

@ -34,6 +34,7 @@ const int MODALITY_NAR_LEN = 1;
const int MAX_DURATION = 75 * 12; const int MAX_DURATION = 75 * 12;
const int CTX_SIZE = 2048; const int CTX_SIZE = 2048;
const int N_THREADS = 8;
// stores the raw inputs to be fed // stores the raw inputs to be fed
struct input_t { struct input_t {
@ -121,7 +122,7 @@ std::vector<float> VALL_E_API soft_max( int n_logits, const float* logits );
// batch and inferencing // batch and inferencing
void VALL_E_API batch_add( llama_batch& batch, llama_token id, int n_embd, const float* embds, llama_pos pos, bool output, const std::vector<llama_seq_id> & seq_ids = {0} ); void VALL_E_API batch_add( llama_batch& batch, llama_token id, int n_embd, const float* embds, llama_pos pos, bool output, const std::vector<llama_seq_id> & seq_ids = {0} );
void VALL_E_API fill_batch( llama_batch& batch, input_t& input, io_map_t& inputs_map, int mode ); void VALL_E_API fill_batch( llama_batch& batch, input_t& input, io_map_t& inputs_map, int mode );
std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* model, llama_sampler* smpl, input_t& input, io_map_t& inputs_map, int max_tokens, int mode, bool verbose = true ); std::vector<llama_token> VALL_E_API generate( llama_context* ctx, llama_model* model, input_t& input, io_map_t& inputs_map, int max_tokens, int mode, bool verbose = true );
// encodec helpers // encodec helpers
bool VALL_E_API read_wav_from_disk( std::string in_path, std::vector<float>& audio_arr ); bool VALL_E_API read_wav_from_disk( std::string in_path, std::vector<float>& audio_arr );

View File

@ -678,7 +678,7 @@ class Base(nn.Module):
LlamaClass = LlamaModel_Adapted # if (self.layerskip or "len" in self.capabilities) else LlamaModel LlamaClass = LlamaModel_Adapted # if (self.layerskip or "len" in self.capabilities) else LlamaModel
if n_experts <= 1: if n_experts <= 1:
self.model = LlamaClass(LlamaConfig( config = LlamaConfig(
vocab_size=n_vocab, vocab_size=n_vocab,
hidden_size=d_model, hidden_size=d_model,
max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds max_position_embeddings=75 * 60 * 5, # max-length of 60 seconds
@ -693,7 +693,9 @@ class Base(nn.Module):
is_decoder=True, is_decoder=True,
attn_implementation=hf_attention, attn_implementation=hf_attention,
#gradient_checkpointing=self.gradient_checkpointing, #gradient_checkpointing=self.gradient_checkpointing,
)) )
print( config )
self.model = LlamaClass(config)
# replace with desired attention # replace with desired attention
if attention_backend not in HF_ATTENTIONS: if attention_backend not in HF_ATTENTIONS: