more tweaks

This commit is contained in:
mrq 2024-09-18 16:43:57 -05:00
parent ebac1db16c
commit 84647f588a
3 changed files with 92 additions and 53 deletions

View File

@ -15,7 +15,7 @@ from .emb.qnt import trim, trim_random, repeat_extend_audio, concat_audio, merge
from .emb.g2p import encode as encode_phns
from .utils.sampler import PoolSampler, OrderedSampler, BatchedOrderedSampler, RandomSampler
from .utils.distributed import global_rank, local_rank, world_size
from .utils.io import torch_save, torch_load, json_read, json_write
from .utils.io import torch_save, torch_load, json_read, json_write, json_stringify, json_parse
from collections import defaultdict
from functools import cache, cached_property
@ -473,7 +473,7 @@ def _load_paths_from_metadata(group_name, type="training", validate=False):
if cfg.dataset.use_metadata and metadata_path.exists():
#metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
metadata = json_read( metadata_path )
if len(metadata) == 0:
return _fn( data_dir, type if cfg.dataset.use_hdf5 else _get_quant_extension(), validate )
@ -554,7 +554,8 @@ def _get_phones(path):
phone_path = _get_phone_path(path)
quant_path = _get_quant_path(path)
if phone_path.exists():
metadata = json.loads(open(phone_path, "r", encoding="utf-8").read())
#metadata = json.loads(open(phone_path, "r", encoding="utf-8").read())
metadata = json_read(phone_path)
elif quant_path.exists():
_, metadata = _load_quants( path, return_metadata=True )
else:
@ -879,7 +880,7 @@ class Dataset(_Dataset):
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
if not metadata_path.exists():
return None
metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read())
metadata = json_read( metadata_path )
if reference not in metadata:
return None
reference_metadata = metadata[reference]
@ -1335,18 +1336,28 @@ def create_train_val_dataloader():
return train_dl, subtrain_dl, val_dl
# parse metadata from an numpy file (.enc/.dac) and validate it
def process_artifact_metadata( artifact ):
metadata = {}
# text transcription (just in case)
if "text" in artifact["metadata"]:
metadata["text"] = artifact["metadata"]["text"]
# phonemization of text transcription (just in case)
if "phonemes" in artifact["metadata"]:
metadata["phonemes"] = artifact["metadata"]["phonemes"]
# language for sampling / input creation
if "language" in artifact["metadata"]:
metadata["language"] = artifact["metadata"]["language"]
if "original_length" in artifact["metadata"] and "sample_rate" in artifact["metadata"]:
# top-k similar utterances for this utternace
if "similar" in artifact["metadata"]:
metadata["similar"] = artifact["metadata"]["similar"]
# duration for use of culling / sorting dataset
if "duration" in artifact["metadata"]:
metadata["duration"] = duration
# derive duration from sample count / sample rate
elif "original_length" in artifact["metadata"] and "sample_rate" in artifact["metadata"]:
metadata["duration"] = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
# rephonemize if required
if "phonemes" not in metadata and "text" in metadata:
metadata["phonemes"] = encode_phns( metadata["text"], language=metadata["language"] if "language" in metadata["language"] else "en" )
@ -1361,6 +1372,16 @@ def process_artifact_metadata( artifact ):
return metadata
# yucky, but I would like to have the LibriTTS-R utterances remapped to their LibriSpeech counterpart
# to-do: allow this to be adjusted without having to regenerate metadata / HDF5 by remapping name during dataloader creation
def remap_speaker_name( name ):
# commented out because I don't want the LibriSpeech portion of the dataset to get added
"""
if "LibriTTS-R" in speaker_name:
name = name.replace("LibriTTS-R", "LibriVox")
"""
return name
# parse dataset into better to sample metadata
def create_dataset_metadata( skip_existing=True ):
symmap = get_phone_symmap()
@ -1373,25 +1394,16 @@ def create_dataset_metadata( skip_existing=True ):
def add( dir, type="training", audios=True, texts=True ):
name = str(dir)
name = name.replace(root, "")
speaker_name = name
"""
if "LibriTTS-R" in speaker_name:
speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox")
"""
speaker_name = remap_speaker_name( name )
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
try:
metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read())
except Exception as e:
metadata = {}
metadata = json_read( metadata_path, default={} )
if not os.path.isdir(f'{root}/{name}/'):
return
# tqdm.write(f'{root}/{name}')
files = os.listdir(f'{root}/{name}/')
# grab IDs for every file
@ -1430,8 +1442,7 @@ def create_dataset_metadata( skip_existing=True ):
tqdm.write(f'Error while processing {id}: {e}')
if wrote:
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
json_write( metadata, metadata_path )
# training
for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"):
@ -1460,16 +1471,12 @@ def create_dataset_hdf5( skip_existing=True ):
def add( dir, type="training", audios=True, texts=True ):
name = str(dir)
name = name.replace(root, "")
# yucky
speaker_name = name
if "LibriTTS-R" in speaker_name:
speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox")
speaker_name = remap_speaker_name( name )
metadata_path = Path(f"{metadata_root}/{speaker_name}.json")
metadata_path.parents[0].mkdir(parents=True, exist_ok=True)
metadata = {} if not metadata_path.exists() else json.loads(open(str(metadata_path), "r", encoding="utf-8").read())
metadata = json_read(metadata_path, default={})
if not os.path.isdir(f'{root}/{name}/'):
return
@ -1534,9 +1541,11 @@ def create_dataset_hdf5( skip_existing=True ):
group.create_dataset('audio', data=qnt.numpy().astype(np.int16), compression='lzf')
# text
# this is a relic from when I did have the quantized audio and phoneme transcription separate
# to-do: ensure I can remove this block
if texts:
if not utterance_metadata and text_exists:
utterance_metadata = json.loads(open(f'{root}/{name}/{id}{_get_phone_extension()}', "r", encoding="utf-8").read())
utterance_metadata = json_read(f'{root}/{name}/{id}{_get_phone_extension()}')
phn = "".join(utterance_metadata["phonemes"])
phn = cfg.tokenizer.encode(phn)
@ -1552,8 +1561,7 @@ def create_dataset_hdf5( skip_existing=True ):
except Exception as e:
tqdm.write(f'Error while processing {id}: {e}')
with open(str(metadata_path), "w", encoding="utf-8") as f:
f.write( json.dumps( metadata ) )
json_write( metadata, metadata_path )
# training
for data_dir in tqdm(cfg.dataset.training, desc="Processing Training"):
@ -1571,7 +1579,7 @@ def create_dataset_hdf5( skip_existing=True ):
if "symmap" in hf:
del hf['symmap']
hf.create_dataset('symmap', data=json.dumps(symmap))
hf.create_dataset('symmap', data=json_stringify(symmap))
hf.close()
if __name__ == "__main__":
@ -1596,7 +1604,7 @@ if __name__ == "__main__":
continue
dataset.append(f'{group}/{name}')
_logger.info(json.dumps(dataset))
_logger.info(json_stringify(dataset))
elif args.action == "metadata":
create_dataset_metadata()
elif args.action == "sample":

View File

@ -54,6 +54,7 @@ def process(
verbose=False,
metadata_path=None,
top_k=8,
metadata_keys=[],
trim_duration=0,
min_duration=0,
@ -73,13 +74,16 @@ def process(
if tts is None:
tts = init_tts( yaml=yaml, restart=False, device=device, dtype=dtype )
features = {}
features = { key: None for key in metadata_keys }
mfcc = None
simplified_metadata = True # aims to slim down the raw data in the JSON to store
slop = True # should probably have a better name for this, but it governs whether to just sum the entire sequence of embeddings into one embedding to make life easier
if not speaker_path.exists():
return
# compute features (embeddings if quantized already, MFCC features if raw audio)
for filename in tqdm(os.listdir(f'./{speaker_path}/'), desc=f"Encoding '{speaker_path.name}'", disable=not verbose):
extension = filename.split(".")[-1]
@ -92,11 +96,13 @@ def process(
artifact = np.load(f'./{speaker_path}/{filename}.{extension}', allow_pickle=True)[()]
duration = artifact["metadata"]["original_length"] / artifact["metadata"]["sample_rate"]
"""
if 0 < min_duration and duration < min_duration:
continue
if 0 < max_duration and max_duration < duration:
continue
"""
lang = artifact["metadata"]["language"] if "language" in artifact["metadata"]["language"] else "en"
if "phonemes" in artifact["metadata"]:
@ -178,22 +184,35 @@ def process(
# do batch cosine similarity processing
keys = list(features.keys())
embeddings = torch.stack( list( features.values() ) )
top_k = min( top_k, len(keys) )
if top_k == 0:
return
null_embedding = torch.zeros( (1024,), device=tts.device, dtype=tts.dtype )
embeddings = torch.stack( [ feature if feature is not None else null_embedding for feature in features.values() ] )
sorted_similarities = {}
for index, filename in tqdm(enumerate(keys), total=len(keys), desc=f"Computing similarities: {speaker_path.name}"):
if features[filename] is None:
continue
embedding = features[filename].unsqueeze(0)
similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1)
# sorting is slow, don't bother
#sorted_similarities[filename] = sorted([ ( i if simplified_metadata else keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
# set current index to -inf
similarities[index] = float("-inf")
similarities = torch.topk(similarities, k=top_k, largest=True, sorted=True).indices.tolist()
# similarities = torch.nn.functional.cosine_similarity(embedding, embeddings, dim=1).cpu().tolist()
topk = torch.topk(similarities, k=top_k, largest=True, sorted=True)
similarities = [ (index, keys[index], score) for index, score in zip( topk.indices.tolist(), topk.values.tolist() ) ]
sorted_similarities[filename] = similarities
# sorting is slow, don't bother
#sorted_similarities[filename] = sorted([ ( i if simplified_metadata else keys[i], similarity ) for i, similarity in enumerate( similarities ) if index != i ], key=lambda x: x[1], reverse=True)
return sorted_similarities
@ -221,6 +240,8 @@ def main():
args = parser.parse_args()
args.skip_existing = False #
if args.use_dataset:
cfg.metadata_dir.mkdir(parents=True, exist_ok=True)
@ -228,10 +249,17 @@ def main():
name = str(dir)
name = name.replace(str(cfg.data_dir), "")
speaker_name = name
"""
if "LibriTTS-R" in speaker_name:
speaker_name = speaker_name.replace("LibriTTS-R", "LibriVox")
"""
metadata_path = cfg.metadata_dir / f'{speaker_name}.json'
metadata = json_read( metadata_path, default={} )
metadata_keys = list(metadata.keys()) if metadata else []
if args.skip_existing and metadata_keys and "similar" in metadata[metadata_keys[-1]]:
return
similarities = process(
speaker_path=cfg.data_dir / speaker_name,
@ -242,6 +270,7 @@ def main():
#min_duration=args.min_duration,
#max_duration=args.max_duration,
storage_backend=args.storage_backend,
metadata_keys=metadata_keys,
audio_backend=args.audio_backend,
device=args.device,
@ -250,29 +279,23 @@ def main():
verbose=True,
)
if not similarities:
return
if args.storage_backend == "faiss":
faiss.write_index(similarities, str(metadata_path.with_suffix(".faiss")))
return
#metadata = json.loads(open( metadata_path, "r", encoding="utf-8" ).read()) if metadata_path.exists() else {}
metadata = json_read( metadata_path, default={} )
metadata_keys = list(metadata.keys()) if metadata else list(similarities.keys())
for filename, sim in similarities.items():
for filename, similar in similarities.items():
if filename not in metadata:
metadata[filename] = {}
metadata[filename]["similar"] = sim
# overkill but i'm very paranoid about mismatching indices
metadata[filename]["similar"] = [ metadata_keys.index(s[1]) for s in similar ]
json_write( metadata, metadata_path )
"""
with open(str(metadata_path), "wb") as f:
f.write( json.dumps( metadata ) )
#f.write( truncate_json( json.dumps( metadata ) ) )
"""
# training
for data_dir in tqdm(sorted(cfg.dataset.training), desc="Processing Training"):
add( data_dir, type="training" )
@ -286,7 +309,7 @@ def main():
add( data_dir, type="noise", texts=False )
elif args.input_speaker:
process(
similarities = process(
speaker_path=args.input_speaker,
yaml=args.yaml,
text=args.text,
@ -304,6 +327,10 @@ def main():
storage_backend=args.storage_backend,
verbose=True,
)
# and print
for filename, sim in similarities.items():
print(f'{filename}: {sim}')
else:
raise Exception("!")

View File

@ -11,7 +11,11 @@ try:
except:
import json
def json_stringify( data ):
from .utils import truncate_json
def json_stringify( data, truncate=False ):
if truncate:
return truncate_json( json.dumps( data ) )
return json.dumps( data )
def json_parse( string ):
@ -26,11 +30,11 @@ def json_read( path, default=None ):
with (open( str(path), "rb" ) if use_orjson else open( str(path), "r", encoding="utf-8" ) ) as f:
return json_parse( f.read() )
def json_write( data, path ):
def json_write( data, path, truncate=False ):
path = coerce_path( path )
with (open( str(path), "wb" ) if use_orjson else open( str(path), "w", encoding="utf-8" ) ) as f:
f.write( json_stringify( data ) )
f.write( json_stringify( data, truncate=truncate ) )
def coerce_path( path ):
return path if isinstance( path, Path ) else Path(path)