added per-speaker samplers

This commit is contained in:
mrq 2023-09-03 21:27:13 -05:00
parent 81b05dabb9
commit 8a6c203277
8 changed files with 70 additions and 12 deletions

4
.gitignore vendored
View File

@ -7,4 +7,6 @@ __pycache__
/*.egg-info /*.egg-info
/vall_e/version.py /vall_e/version.py
/build /build
/.cache /.cache
/vall_e/ext/interleaver.py

View File

@ -162,6 +162,7 @@ class Model:
tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc") tasks: int = 8 # ["tts", "ns", "sr", "tse", "cse", "nse"] and leaves two more for anything else I want (like "svc")
arch_type: str = "transformer" arch_type: str = "transformer"
training: bool = True training: bool = True
interleave_pattern: str | None = None
@property @property
def full_name(self): def full_name(self):

View File

@ -12,6 +12,7 @@ import itertools
from .config import cfg from .config import cfg
from .emb.qnt import trim, trim_random, repeat_extend_audio, merge_audio, decode_to_file from .emb.qnt import trim, trim_random, repeat_extend_audio, merge_audio, decode_to_file
from .utils.sampler import Sampler
from collections import defaultdict from collections import defaultdict
from functools import cache, cached_property from functools import cache, cached_property
@ -173,6 +174,8 @@ class Dataset(_Dataset):
self.paths_by_spkr_name = _load_paths(self.dataset, self.dataset_type) self.paths_by_spkr_name = _load_paths(self.dataset, self.dataset_type)
self.paths = list(itertools.chain.from_iterable(self.paths_by_spkr_name.values())) self.paths = list(itertools.chain.from_iterable(self.paths_by_spkr_name.values()))
self.samplers = { name: Sampler( paths, keep_all=True ) for name, paths in self.paths_by_spkr_name.items() }
if cfg.dataset.sample_type == "path": if cfg.dataset.sample_type == "path":
self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)] self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)]
@ -215,6 +218,22 @@ class Dataset(_Dataset):
def tasks(self): def tasks(self):
return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse" return cfg.dataset.tasks_list # ["tts", "tts", "ns", "sr", "tse", "tts", "tts"] # , "cse", "nse"
def save_state_dict(self, path):
state_dict = {
"samplers": { name: sampler.current_pool for name, sampler in self.samplers.items() }
}
torch.save(state_dict, path)
def load_state_dict(self, path):
state_dict = torch.load(path)
if "samplers" in state_dict:
# better than naively setting the entire object
for name, sampler in state_dict["samplers"].items():
if name not in self.samplers:
continue
self.samplers[name].current_pool = sampler
def _get_phone_symmap(self): def _get_phone_symmap(self):
return get_phone_symmap() return get_phone_symmap()
@ -290,7 +309,7 @@ class Dataset(_Dataset):
if cfg.dataset.sample_type == "speaker": if cfg.dataset.sample_type == "speaker":
spkr_name = self.spkrs[index] spkr_name = self.spkrs[index]
spkr_id = self.spkr_symmap[spkr_name] spkr_id = self.spkr_symmap[spkr_name]
path = random.choice([*set(self.paths_by_spkr_name[spkr_name])]) path = self.samplers[spkr_name].sample()
else: else:
path = self.paths[index] path = self.paths[index]
spkr_name = self.get_speaker(path) spkr_name = self.get_speaker(path)
@ -543,6 +562,10 @@ def create_datasets():
train_dataset = Dataset( training=True ) train_dataset = Dataset( training=True )
val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False ) val_dataset = Dataset( phone_symmap=train_dataset.phone_symmap, training=False )
train_state_path = cfg.relpath / "train_dataset.pt"
if train_state_path.exists():
train_dataset.load_state_dict( train_state_path )
return train_dataset, val_dataset return train_dataset, val_dataset
@ -752,6 +775,8 @@ if __name__ == "__main__":
del v[i]['resps'] del v[i]['resps']
print(f'{k}:', v) print(f'{k}:', v)
train_dl.dataset.save_state_dict(cfg.relpath / "train_dataset.pt")
elif args.action == "tasks": elif args.action == "tasks":
index = 0 index = 0
cfg.dataset.tasks_list = args.tasks.split(",") cfg.dataset.tasks_list = args.tasks.split(",")

View File

@ -15,6 +15,7 @@ def get_model(cfg):
d_model=cfg.dim, d_model=cfg.dim,
n_heads=cfg.heads, n_heads=cfg.heads,
n_layers=cfg.layers, n_layers=cfg.layers,
config = cfg
) )
model._cfg = cfg model._cfg = cfg

View File

@ -22,8 +22,8 @@ class AR(Base):
return "ln" return "ln"
@property @property
def arch_type(self) -> bool: def arch_type(self) -> str:
if hasattr(self, "_cfg"): if hasattr(self, "_cfg") and self._cfg:
return self._cfg.arch_type return self._cfg.arch_type
return cfg.models.ar.arch_type return cfg.models.ar.arch_type
@ -33,7 +33,7 @@ class AR(Base):
@property @property
def n_resp_levels(self) -> int: def n_resp_levels(self) -> int:
if hasattr(self, "_cfg"): if hasattr(self, "_cfg") and self._cfg:
return self._cfg.resp_levels return self._cfg.resp_levels
return cfg.models.ar.resp_levels return cfg.models.ar.resp_levels
@ -146,8 +146,8 @@ def example_usage():
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device), tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
] ]
proms_list = [ proms_list = [
x8(torch.tensor([1, 2, 3], device=device)), #x8(torch.tensor([1, 2, 3], device=device)),
#qnt.to(device), qnt.to(device),
] ]
resps_list = [ resps_list = [
qnt.to(device), qnt.to(device),
@ -161,7 +161,7 @@ def example_usage():
'n_tokens': 1024, 'n_tokens': 1024,
'd_model': 1024, 'd_model': 1024,
'n_heads': 16, 'n_heads': 16,
'n_layers': 12, 'n_layers': 24,
} }
model = AR(**kwargs).to(device) model = AR(**kwargs).to(device)
engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) engine = Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4))

View File

@ -16,8 +16,8 @@ class NAR(Base):
return False return False
@property @property
def arch_type(self) -> bool: def arch_type(self) -> str:
if hasattr(self, "_cfg"): if hasattr(self, "_cfg") and self._cfg:
return self._cfg.arch_type return self._cfg.arch_type
return cfg.models.nar.arch_type return cfg.models.nar.arch_type
@ -31,7 +31,7 @@ class NAR(Base):
@property @property
def n_resp_levels(self) -> int: def n_resp_levels(self) -> int:
if hasattr(self, "_cfg"): if hasattr(self, "_cfg") and self._cfg:
return self._cfg.resp_levels return self._cfg.resp_levels
return cfg.models.nar.resp_levels return cfg.models.nar.resp_levels

View File

@ -1,2 +1,29 @@
from dataclasses import dataclass
from typing import Any
import random
@dataclass
class Sampler(): class Sampler():
... def __init__( self, pool = [], keep_all = False ):
self.global_pool = pool if keep_all else None
self.global_indices = [ i for i in range(len(pool)) ]
self.reset()
def reset(self):
self.current_pool = [ i for i in self.global_indices ]
def sample(self, pool = None):
if pool is None:
pool = self.global_pool
# check if we need to reset
index = random.choice( self.current_pool )
# remove from pool
self.current_pool.remove(index)
# reset if needed
if len(self.current_pool) == 0:
self.reset()
# map indices to our real values
return pool[index] if pool is not None else index
def __call__(self, *args, **kwargs):
return self.sample(*args, **kwargs)

View File

@ -311,6 +311,7 @@ def train(
print("Failed to set LR rate to:", rate, str(e)) print("Failed to set LR rate to:", rate, str(e))
if "export" in command: if "export" in command:
train_dl.dataset.save_state_dict(cfg.relpath / "train_dataset.pt")
engines.save_checkpoint() engines.save_checkpoint()
last_save_step = engines.global_step last_save_step = engines.global_step
@ -333,6 +334,7 @@ def train(
if engines.global_step != last_save_step: if engines.global_step != last_save_step:
if engines.global_step % save_ckpt_every == 0 or command in saving_commands: if engines.global_step % save_ckpt_every == 0 or command in saving_commands:
train_dl.dataset.save_state_dict(cfg.relpath / "train_dataset.pt")
engines.save_checkpoint() engines.save_checkpoint()
last_save_step = engines.global_step last_save_step = engines.global_step