backport fix from tortoise_tts with local trainer + loading state when training lora
This commit is contained in:
parent
62a53eed64
commit
8fffb94964
|
@ -35,6 +35,8 @@ def main():
|
||||||
parser.add_argument("--mirostat-tau", type=float, default=0)
|
parser.add_argument("--mirostat-tau", type=float, default=0)
|
||||||
parser.add_argument("--mirostat-eta", type=float, default=0)
|
parser.add_argument("--mirostat-eta", type=float, default=0)
|
||||||
|
|
||||||
|
parser.add_argument("--seed", type=int, default=None)
|
||||||
|
|
||||||
parser.add_argument("--device", type=str, default=None)
|
parser.add_argument("--device", type=str, default=None)
|
||||||
parser.add_argument("--amp", action="store_true")
|
parser.add_argument("--amp", action="store_true")
|
||||||
parser.add_argument("--dtype", type=str, default=None)
|
parser.add_argument("--dtype", type=str, default=None)
|
||||||
|
@ -55,7 +57,8 @@ def main():
|
||||||
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
|
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
|
||||||
length_penalty=args.length_penalty,
|
length_penalty=args.length_penalty,
|
||||||
beam_width=args.beam_width,
|
beam_width=args.beam_width,
|
||||||
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta
|
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
|
||||||
|
seed=args.seed,
|
||||||
)
|
)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
|
@ -8,8 +8,10 @@ import sys
|
||||||
import time
|
import time
|
||||||
import argparse
|
import argparse
|
||||||
import yaml
|
import yaml
|
||||||
|
import random
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from dataclasses import asdict, dataclass, field
|
from dataclasses import asdict, dataclass, field
|
||||||
|
|
||||||
|
@ -18,6 +20,15 @@ from pathlib import Path
|
||||||
|
|
||||||
from .utils.distributed import world_size
|
from .utils.distributed import world_size
|
||||||
|
|
||||||
|
|
||||||
|
def set_seed(seed=None):
|
||||||
|
if not seed:
|
||||||
|
seed = time.time()
|
||||||
|
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
|
||||||
@dataclass()
|
@dataclass()
|
||||||
class BaseConfig:
|
class BaseConfig:
|
||||||
yaml_path: str | None = None
|
yaml_path: str | None = None
|
||||||
|
|
107
vall_e/data.py
107
vall_e/data.py
|
@ -1278,6 +1278,111 @@ def create_dataset_hdf5( skip_existing=True ):
|
||||||
hf.create_dataset('symmap', data=json.dumps(symmap))
|
hf.create_dataset('symmap', data=json.dumps(symmap))
|
||||||
hf.close()
|
hf.close()
|
||||||
|
|
||||||
|
def transcribe_dataset():
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
import whisperx
|
||||||
|
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# to-do: use argparser
|
||||||
|
batch_size = 16
|
||||||
|
device = "cuda"
|
||||||
|
dtype = "float16"
|
||||||
|
model_name = "large-v3"
|
||||||
|
|
||||||
|
input_audio = "voices"
|
||||||
|
output_dataset = "training/metadata"
|
||||||
|
|
||||||
|
skip_existing = True
|
||||||
|
diarize = False
|
||||||
|
|
||||||
|
#
|
||||||
|
model = whisperx.load_model(model_name, device, compute_type=dtype)
|
||||||
|
align_model, align_model_metadata, align_model_language = (None, None, None)
|
||||||
|
if diarize:
|
||||||
|
diarize_model = whisperx.DiarizationPipeline(device=device)
|
||||||
|
else:
|
||||||
|
diarize_model = None
|
||||||
|
|
||||||
|
def pad(num, zeroes):
|
||||||
|
return str(num).zfill(zeroes+1)
|
||||||
|
|
||||||
|
for dataset_name in os.listdir(f'./{input_audio}/'):
|
||||||
|
if not os.path.isdir(f'./{input_audio}/{dataset_name}/'):
|
||||||
|
continue
|
||||||
|
|
||||||
|
for speaker_id in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/'), desc="Processing speaker"):
|
||||||
|
if not os.path.isdir(f'./{input_audio}/{dataset_name}/{speaker_id}'):
|
||||||
|
continue
|
||||||
|
|
||||||
|
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/whisper.json')
|
||||||
|
|
||||||
|
if outpath.exists():
|
||||||
|
metadata = json.loads(open(outpath, 'r', encoding='utf-8').read())
|
||||||
|
else:
|
||||||
|
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
|
||||||
|
metadata = {}
|
||||||
|
|
||||||
|
for filename in tqdm(os.listdir(f'./{input_audio}/{dataset_name}/{speaker_id}/'), desc=f"Processing speaker: {speaker_id}"):
|
||||||
|
|
||||||
|
if skip_existing and filename in metadata:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ".json" in filename:
|
||||||
|
continue
|
||||||
|
|
||||||
|
inpath = f'./{input_audio}/{dataset_name}/{speaker_id}/{filename}'
|
||||||
|
|
||||||
|
if os.path.isdir(inpath):
|
||||||
|
continue
|
||||||
|
|
||||||
|
metadata[filename] = {
|
||||||
|
"segments": [],
|
||||||
|
"language": "",
|
||||||
|
"text": "",
|
||||||
|
"start": 0,
|
||||||
|
"end": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
audio = whisperx.load_audio(inpath)
|
||||||
|
result = model.transcribe(audio, batch_size=batch_size)
|
||||||
|
language = result["language"]
|
||||||
|
|
||||||
|
if language[:2] not in ["ja"]:
|
||||||
|
language = "en"
|
||||||
|
|
||||||
|
if align_model_language != language:
|
||||||
|
tqdm.write(f'Loading language: {language}')
|
||||||
|
align_model, align_model_metadata = whisperx.load_align_model(language_code=language, device=device)
|
||||||
|
align_model_language = language
|
||||||
|
|
||||||
|
result = whisperx.align(result["segments"], align_model, align_model_metadata, audio, device, return_char_alignments=False)
|
||||||
|
|
||||||
|
metadata[filename]["segments"] = result["segments"]
|
||||||
|
metadata[filename]["language"] = language
|
||||||
|
|
||||||
|
if diarize_model is not None:
|
||||||
|
diarize_segments = diarize_model(audio)
|
||||||
|
result = whisperx.assign_word_speakers(diarize_segments, result)
|
||||||
|
|
||||||
|
text = []
|
||||||
|
start = 0
|
||||||
|
end = 0
|
||||||
|
for segment in result["segments"]:
|
||||||
|
text.append( segment["text"] )
|
||||||
|
start = min( start, segment["start"] )
|
||||||
|
end = max( end, segment["end"] )
|
||||||
|
|
||||||
|
metadata[filename]["text"] = " ".join(text).strip()
|
||||||
|
metadata[filename]["start"] = start
|
||||||
|
metadata[filename]["end"] = end
|
||||||
|
|
||||||
|
open(outpath, 'w', encoding='utf-8').write(json.dumps(metadata))
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
|
@ -1297,6 +1402,8 @@ if __name__ == "__main__":
|
||||||
_logger = LoggerOveride()
|
_logger = LoggerOveride()
|
||||||
|
|
||||||
if args.action == "hdf5":
|
if args.action == "hdf5":
|
||||||
|
transcribe_dataset()
|
||||||
|
elif args.action == "hdf5":
|
||||||
create_dataset_hdf5()
|
create_dataset_hdf5()
|
||||||
elif args.action == "list-dataset":
|
elif args.action == "list-dataset":
|
||||||
dataset = []
|
dataset = []
|
||||||
|
|
|
@ -116,10 +116,15 @@ def load_engines(training=True):
|
||||||
optimizer = None
|
optimizer = None
|
||||||
lr_scheduler = None
|
lr_scheduler = None
|
||||||
|
|
||||||
|
checkpoint_path = cfg.ckpt_dir / name / "latest"
|
||||||
# automatically load from state dict if one is provided, but no DeepSpeed checkpoint is present
|
# automatically load from state dict if one is provided, but no DeepSpeed checkpoint is present
|
||||||
load_path = cfg.ckpt_dir / name / "fp32.pth"
|
load_path = cfg.ckpt_dir / name / "fp32.pth"
|
||||||
|
|
||||||
if not loads_state_dict and not (cfg.ckpt_dir / name / "latest").exists() and load_path.exists():
|
# actually use the lora-specific checkpoint if available
|
||||||
|
if cfg.lora is not None:
|
||||||
|
checkpoint_path = cfg.ckpt_dir / lora.full_name / "latest"
|
||||||
|
|
||||||
|
if not loads_state_dict and not checkpoint_path.exists() and load_path.exists():
|
||||||
print("Checkpoint missing, but weights found.")
|
print("Checkpoint missing, but weights found.")
|
||||||
loads_state_dict = True
|
loads_state_dict = True
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import soundfile
|
import soundfile
|
||||||
|
import time
|
||||||
|
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
@ -8,7 +9,7 @@ from pathlib import Path
|
||||||
|
|
||||||
from .emb import g2p, qnt
|
from .emb import g2p, qnt
|
||||||
from .emb.qnt import trim, trim_random
|
from .emb.qnt import trim, trim_random
|
||||||
from .utils import to_device
|
from .utils import to_device, set_seed, wrapper as ml
|
||||||
|
|
||||||
from .config import cfg
|
from .config import cfg
|
||||||
from .models import get_models
|
from .models import get_models
|
||||||
|
@ -133,6 +134,9 @@ class TTS():
|
||||||
beam_width=0,
|
beam_width=0,
|
||||||
mirostat_tau=0,
|
mirostat_tau=0,
|
||||||
mirostat_eta=0.1,
|
mirostat_eta=0.1,
|
||||||
|
|
||||||
|
seed = None,
|
||||||
|
|
||||||
out_path=None
|
out_path=None
|
||||||
):
|
):
|
||||||
lines = text.split("\n")
|
lines = text.split("\n")
|
||||||
|
@ -152,9 +156,14 @@ class TTS():
|
||||||
if "nar" in engine.hyper_config.capabilities:
|
if "nar" in engine.hyper_config.capabilities:
|
||||||
model_nar = engine.module
|
model_nar = engine.module
|
||||||
|
|
||||||
|
set_seed(seed)
|
||||||
|
|
||||||
for line in lines:
|
for line in lines:
|
||||||
if out_path is None:
|
if out_path is None:
|
||||||
out_path = f"./data/{cfg.start_time}.wav"
|
output_dir = Path("./data/results/")
|
||||||
|
if not output_dir.exists():
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
out_path = output_dir / f"{time.time()}.wav"
|
||||||
|
|
||||||
prom = self.encode_audio( references, trim_length=input_prompt_length )
|
prom = self.encode_audio( references, trim_length=input_prompt_length )
|
||||||
phns = self.encode_text( line, language=language )
|
phns = self.encode_text( line, language=language )
|
||||||
|
|
|
@ -7,4 +7,5 @@ from .utils import (
|
||||||
to_device,
|
to_device,
|
||||||
tree_map,
|
tree_map,
|
||||||
do_gc,
|
do_gc,
|
||||||
|
set_seed,
|
||||||
)
|
)
|
|
@ -131,10 +131,6 @@ def train(
|
||||||
_logger.info(cfg)
|
_logger.info(cfg)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Setup global engines
|
|
||||||
global _engines
|
|
||||||
_engines = engines
|
|
||||||
|
|
||||||
events = []
|
events = []
|
||||||
|
|
||||||
eval_fn = global_leader_only(eval_fn)
|
eval_fn = global_leader_only(eval_fn)
|
||||||
|
|
|
@ -7,8 +7,11 @@ from .distributed import global_rank, local_rank, global_leader_only
|
||||||
import gc
|
import gc
|
||||||
import logging
|
import logging
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
import re
|
import re
|
||||||
import torch
|
import torch
|
||||||
|
import random
|
||||||
|
import time
|
||||||
|
|
||||||
from coloredlogs import ColoredFormatter
|
from coloredlogs import ColoredFormatter
|
||||||
from logging import StreamHandler
|
from logging import StreamHandler
|
||||||
|
@ -35,6 +38,14 @@ def flatten_dict(d):
|
||||||
return records[0] if records else {}
|
return records[0] if records else {}
|
||||||
|
|
||||||
|
|
||||||
|
def set_seed(seed=None):
|
||||||
|
if not seed:
|
||||||
|
seed = int(time.time())
|
||||||
|
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
|
||||||
def _get_named_modules(module, attrname):
|
def _get_named_modules(module, attrname):
|
||||||
for name, module in module.named_modules():
|
for name, module in module.named_modules():
|
||||||
if hasattr(module, attrname):
|
if hasattr(module, attrname):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user