feverish cleanup
This commit is contained in:
parent
7feeb944a0
commit
934672252b
|
@ -1,3 +1,4 @@
|
|||
experimental: False # should probably expand this into a dict of experimental flags
|
||||
sample_rate: 24_000 # 44_000 for dac
|
||||
audio_backend: "vocos" # or dac
|
||||
|
||||
|
@ -11,9 +12,10 @@ models:
|
|||
tones: 1
|
||||
arch_type: llama
|
||||
training: True
|
||||
version: 4
|
||||
version: 5
|
||||
attention: flash_attention_2
|
||||
dropout: 0.1
|
||||
experimental: False
|
||||
|
||||
loss_factors:
|
||||
text: 0.1
|
||||
|
@ -63,11 +65,10 @@ trainer:
|
|||
|
||||
keep_last_checkpoints: 4
|
||||
|
||||
aggressive_optimizations: False
|
||||
load_disabled_engines: False
|
||||
gradient_checkpointing: True
|
||||
|
||||
#load_state_dict: True
|
||||
strict_loading: False
|
||||
#load_state_dict: True
|
||||
#load_tag: "9500"
|
||||
#load_states: False
|
||||
#restart_step_count: True
|
||||
|
@ -85,8 +86,6 @@ trainer:
|
|||
|
||||
amp: False
|
||||
|
||||
activation_checkpointing: True
|
||||
|
||||
load_webui: False
|
||||
|
||||
inference:
|
||||
|
@ -109,8 +108,6 @@ optimizations:
|
|||
bitnet: False
|
||||
fp8: False
|
||||
|
||||
experimental: True # practically required now it seems
|
||||
|
||||
dataset:
|
||||
speaker_name_getter: "lambda p: f'{p.parts[-3]}_{p.parts[-2]}'"
|
||||
speaker_group_getter: "lambda p: f'{p.parts[-3]}'"
|
||||
|
|
|
@ -191,6 +191,7 @@ class Dataset:
|
|||
def max_duration(self):
|
||||
return self.duration_range[1]
|
||||
|
||||
# I really need to clean this up
|
||||
@dataclass()
|
||||
class Model:
|
||||
_max_levels: int = 0
|
||||
|
@ -215,6 +216,7 @@ class Model:
|
|||
dropout: float = 0.1 # adjustable dropout value
|
||||
loss_factors: dict = field(default_factory=lambda: { "text": 0.1, "prom": 0.0, "resp": 1.0 })
|
||||
kv_heads: int = 0
|
||||
experimental: bool = False
|
||||
|
||||
def get(self, name=None):
|
||||
return [ self ] if not name or self.name == name else []
|
||||
|
@ -306,6 +308,10 @@ class Model:
|
|||
def activation_checkpointing(self):
|
||||
return cfg.trainer.activation_checkpointing
|
||||
|
||||
@property
|
||||
def gradient_checkpointing(self):
|
||||
return cfg.trainer.gradient_checkpointing
|
||||
|
||||
@dataclass()
|
||||
class Hyperparameters:
|
||||
batch_size: int = 8
|
||||
|
@ -519,7 +525,8 @@ class Trainer:
|
|||
load_module_only: bool = False
|
||||
restart_step_count: bool = False
|
||||
|
||||
activation_checkpointing: bool = True
|
||||
activation_checkpointing: bool | None = None # deprecated
|
||||
gradient_checkpointing: bool = True
|
||||
|
||||
aggressive_optimizations: bool = False
|
||||
check_for_oom: bool = True
|
||||
|
@ -728,6 +735,9 @@ class Config(_Config):
|
|||
if self.inference.audio_backend != "" and self.audio_backend == "":
|
||||
self.audio_backend = self.inference.audio_backend
|
||||
|
||||
if self.trainer.activation_checkpointing is not None:
|
||||
self.trainer.gradient_checkpointing = self.trainer.activation_checkpointing
|
||||
|
||||
# Preserves the old behavior
|
||||
class NaiveTokenizer:
|
||||
def get_vocab( self ):
|
||||
|
|
133
vall_e/data.py
133
vall_e/data.py
|
@ -24,11 +24,144 @@ from typing import Any
|
|||
from torch import Tensor
|
||||
from torch.utils.data import DataLoader, Dataset as _Dataset
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
# torch.multiprocessing.set_sharing_strategy("file_system")
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
# fold into a typical LLM sequence (one embedding rather than split embeddings)
|
||||
def fold_inputs(
|
||||
text_list = [],
|
||||
prom_list = [],
|
||||
resp_list = [],
|
||||
|
||||
ignore_index = None,
|
||||
|
||||
sep = 3,
|
||||
stop = 3,
|
||||
|
||||
text_tokens = 256,
|
||||
audio_tokens = 1024,
|
||||
audio_rvq_levels = cfg.model.prom_levels
|
||||
):
|
||||
def _create_mask(l, device):
|
||||
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
|
||||
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
|
||||
return (seq < stop).float() # (b t)
|
||||
|
||||
def list_to_tensor(x_list: list[Tensor]):
|
||||
l = list(map(len, x_list))
|
||||
x = pad_sequence(x_list).t()
|
||||
|
||||
m = _create_mask(l, x_list[0].device)
|
||||
m = m.to(x)
|
||||
return x, m
|
||||
|
||||
device = text_list[0].device
|
||||
batch_size = len(text_list)
|
||||
input_ids = [ [] for _ in range(batch_size) ]
|
||||
|
||||
offset = 0
|
||||
|
||||
sep = torch.Tensor([ sep ])
|
||||
stop = torch.Tensor([ stop ])
|
||||
|
||||
for i, text in enumerate(text_list):
|
||||
seq = text.to("cpu", dtype=torch.int64)
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( sep )
|
||||
|
||||
offset = text_tokens
|
||||
for i, prom in enumerate(prom_list):
|
||||
if ignore_index is not None:
|
||||
seq = torch.Tensor( [ ignore_index for _ in range( prom.shape[0] * prom.shape[1] ) ] ).to("cpu", dtype=torch.int64)
|
||||
else:
|
||||
seq = prom.flatten().to("cpu", dtype=torch.int64)
|
||||
for idx, token in enumerate( seq ):
|
||||
token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) )
|
||||
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( sep )
|
||||
|
||||
offset = text_tokens + (audio_tokens * audio_rvq_levels)
|
||||
for i, resp in enumerate(resp_list):
|
||||
seq = resp.flatten().to("cpu", dtype=torch.int64)
|
||||
for idx, token in enumerate( seq ):
|
||||
token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) )
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( stop )
|
||||
|
||||
for i, batch in enumerate(input_ids):
|
||||
input_ids[i] = torch.concat(input_ids[i], dim=-1).to(device=device, dtype=torch.int64)
|
||||
|
||||
return list_to_tensor(input_ids)
|
||||
|
||||
# unfold from one unified token ID space to separate token spaces
|
||||
def unfold_outputs(
|
||||
output_ids,
|
||||
|
||||
sep = 3,
|
||||
stop = 3,
|
||||
|
||||
text_tokens = 256,
|
||||
audio_tokens = 1024,
|
||||
audio_rvq_levels = cfg.model.prom_levels
|
||||
):
|
||||
device = output_ids.device
|
||||
batch_size = output_ids.shape[0]
|
||||
|
||||
text_list = [ [] for _ in range(batch_size) ]
|
||||
prom_list = [ [] for _ in range(batch_size) ]
|
||||
resp_list = [ [] for _ in range(batch_size) ]
|
||||
|
||||
for i, batch in enumerate( output_ids ):
|
||||
for idx, token in enumerate( batch ):
|
||||
id = token.item()
|
||||
if id == sep or id == stop:
|
||||
continue
|
||||
|
||||
if 0 <= id and id < text_tokens:
|
||||
text_list[i].append( id )
|
||||
elif text_tokens <= id and id < text_tokens + (audio_tokens * audio_rvq_levels):
|
||||
prom_list[i].append( (id - text_tokens) % audio_tokens )
|
||||
elif text_tokens + (audio_tokens * audio_rvq_levels) <= id:
|
||||
resp_list[i].append( (id - text_tokens) % audio_tokens )
|
||||
|
||||
prom_len = len(prom_list[i])
|
||||
if prom_len % audio_rvq_levels == 0 and False:
|
||||
prom_list[i] = torch.Tensor(prom_list[i]).reshape( audio_rvq_levels, prom_len // audio_rvq_levels ).t()
|
||||
else:
|
||||
bins = [ [] for _ in range(audio_rvq_levels) ]
|
||||
for pos in range( prom_len ):
|
||||
rvq = pos % audio_rvq_levels
|
||||
bins[rvq].append( prom_list[i][pos] )
|
||||
nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels
|
||||
bins = bins[:nearest]
|
||||
prom_list[i] = torch.Tensor(bins).t().to(dtype=torch.int64)
|
||||
|
||||
|
||||
resp_len = len(resp_list[i])
|
||||
if len(resp_list[i]) % audio_rvq_levels == 0 and False:
|
||||
resp_list[i] = torch.Tensor(resp_list[i]).reshape( audio_rvq_levels, resp_len // audio_rvq_levels ).t()
|
||||
else:
|
||||
bins = [ [] for _ in range(audio_rvq_levels) ]
|
||||
for pos in range( resp_len ):
|
||||
rvq = pos % audio_rvq_levels
|
||||
bins[rvq].append( resp_list[i][pos] )
|
||||
nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels
|
||||
bins = bins[:nearest]
|
||||
resp_list[i] = torch.Tensor(bins).t().to(dtype=torch.int64)
|
||||
|
||||
text_list[i] = torch.Tensor( text_list[i] ).to(dtype=torch.int64)
|
||||
|
||||
return dict(
|
||||
text_list=text_list,
|
||||
prom_list=prom_list,
|
||||
resp_list=resp_list
|
||||
)
|
||||
|
||||
# to-do: clean up this symmap mess
|
||||
def get_phone_symmap():
|
||||
return cfg.tokenizer.get_vocab()
|
||||
|
|
|
@ -33,7 +33,7 @@ def load_engines(training=True):
|
|||
optimizer = None
|
||||
lr_scheduler = None
|
||||
|
||||
inferencing = cfg.mode == "inferencing" or not model._cfg.training
|
||||
inferencing = cfg.mode == "inferencing" or not model.hyper_config.training
|
||||
backend = cfg.inference.backend if inferencing else cfg.trainer.backend
|
||||
dtype = cfg.inference.dtype if inferencing else cfg.trainer.dtype
|
||||
amp = cfg.inference.amp if inferencing else cfg.trainer.amp
|
||||
|
@ -43,7 +43,7 @@ def load_engines(training=True):
|
|||
engine_class = _Engine if backend == "local" or inferencing else Engine
|
||||
|
||||
if inferencing:
|
||||
model._cfg.training = False
|
||||
model.hyper_config.training = False
|
||||
|
||||
if cfg.optimizations.replace and cfg.optimizations.linear:
|
||||
model.model = ml.replace_linear( model.model )
|
||||
|
@ -83,7 +83,7 @@ def load_engines(training=True):
|
|||
params.update(cfg.hyperparameters.optimizer_params)
|
||||
|
||||
optimizer = optimizer_class(
|
||||
[ param for name, param in model.named_parameters() if name not in model._cfg.frozen_params ],
|
||||
[ param for name, param in model.named_parameters() if name not in model.hyper_config.frozen_params ],
|
||||
**params,
|
||||
)
|
||||
|
||||
|
@ -96,7 +96,7 @@ def load_engines(training=True):
|
|||
raise ValueError(f'ScheduleFree not implemented with requested optimizer: {cfg.hyperparameters.optimizer}')
|
||||
|
||||
optimizer = scheduler_class(
|
||||
[ param for name, param in model.named_parameters() if name not in model._cfg.frozen_params ],
|
||||
[ param for name, param in model.named_parameters() if name not in model.hyper_config.frozen_params ],
|
||||
lr = params['lr'],
|
||||
warmup_steps = cfg.hyperparameters.warmup_steps
|
||||
)
|
||||
|
@ -144,7 +144,7 @@ def load_engines(training=True):
|
|||
|
||||
model.load_state_dict(state, strict=cfg.trainer.strict_loading)
|
||||
|
||||
_cfg = model._cfg
|
||||
hyper_config = model.hyper_config
|
||||
|
||||
# wrap if DDP is requested
|
||||
if ddp:
|
||||
|
@ -161,7 +161,7 @@ def load_engines(training=True):
|
|||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
|
||||
_cfg=_cfg,
|
||||
hyper_config=hyper_config,
|
||||
stats=stats
|
||||
)
|
||||
|
||||
|
|
|
@ -52,9 +52,9 @@ if not distributed_initialized() and cfg.trainer.backend == "local": # and world
|
|||
# A very naive engine implementation using barebones PyTorch
|
||||
class Engine():
|
||||
def __init__(self, *args, **kwargs):
|
||||
if '_cfg' in kwargs:
|
||||
self._cfg = kwargs['_cfg']
|
||||
kwargs.pop("_cfg")
|
||||
if 'hyper_config' in kwargs:
|
||||
self.hyper_config = kwargs['hyper_config']
|
||||
kwargs.pop("hyper_config")
|
||||
|
||||
self.module = kwargs['model'].to(cfg.device).to(torch.float32 if cfg.trainer.amp else cfg.trainer.dtype)
|
||||
self.optimizer = kwargs['optimizer'] if 'optimizer' in kwargs else None
|
||||
|
@ -72,11 +72,11 @@ class Engine():
|
|||
|
||||
def freeze(self, freeze_all=True):
|
||||
# set to freeze
|
||||
if self._cfg is None or not hasattr(self._cfg, "frozen_params"):
|
||||
raise Exception("freeze_all=False yet self._cfg.frozen_params is None")
|
||||
if self.hyper_config is None or not hasattr(self.hyper_config, "frozen_params"):
|
||||
raise Exception("freeze_all=False yet self.hyper_config.frozen_params is None")
|
||||
|
||||
for name, param in self.module.named_parameters():
|
||||
if (freeze_all and param.requires_grad) or (not freeze_all and name in self._cfg.frozen_params):
|
||||
if (freeze_all and param.requires_grad) or (not freeze_all and name in self.hyper_config.frozen_params):
|
||||
param.requires_grad_(False)
|
||||
self._frozen_params.add(param)
|
||||
|
||||
|
@ -87,9 +87,9 @@ class Engine():
|
|||
|
||||
@property
|
||||
def _training(self):
|
||||
if not hasattr(self, "_cfg"):
|
||||
if not hasattr(self, "hyper_config"):
|
||||
return True
|
||||
return self._cfg.training
|
||||
return self.hyper_config.training
|
||||
|
||||
@property
|
||||
def global_step(self):
|
||||
|
|
|
@ -32,10 +32,10 @@ if not distributed_initialized() and cfg.trainer.backend == "deepspeed":
|
|||
|
||||
class Engine(DeepSpeedEngine):
|
||||
def __init__(self, *args, **kwargs):
|
||||
self._cfg = None
|
||||
if '_cfg' in kwargs:
|
||||
self._cfg = kwargs['_cfg']
|
||||
kwargs.pop("_cfg")
|
||||
self.hyper_config = None
|
||||
if 'hyper_config' in kwargs:
|
||||
self.hyper_config = kwargs['hyper_config']
|
||||
kwargs.pop("hyper_config")
|
||||
|
||||
kwargs['config'] = cfg.trainer.deepspeed.ds_cfg
|
||||
kwargs['config_class'] = DeepSpeedConfig(kwargs['config'])
|
||||
|
@ -63,11 +63,11 @@ class Engine(DeepSpeedEngine):
|
|||
self.max_nan_losses = 8
|
||||
|
||||
def freeze(self, freeze_all=True):
|
||||
if self._cfg is None or not hasattr(self._cfg, "frozen_params"):
|
||||
raise Exception("freeze_all=False yet self._cfg.frozen_params is None")
|
||||
if self.hyper_config is None or not hasattr(self.hyper_config, "frozen_params"):
|
||||
raise Exception("freeze_all=False yet self.hyper_config.frozen_params is None")
|
||||
|
||||
for name, param in self.module.named_parameters():
|
||||
if (freeze_all and param.requires_grad) or (not freeze_all and name in self._cfg.frozen_params):
|
||||
if (freeze_all and param.requires_grad) or (not freeze_all and name in self.hyper_config.frozen_params):
|
||||
param.requires_grad_(False)
|
||||
self._frozen_params.add(param)
|
||||
|
||||
|
@ -78,7 +78,7 @@ class Engine(DeepSpeedEngine):
|
|||
|
||||
@property
|
||||
def _training(self):
|
||||
return self._cfg.training
|
||||
return self.hyper_config.training
|
||||
|
||||
@property
|
||||
def global_step(self):
|
||||
|
|
|
@ -1,23 +1,34 @@
|
|||
from .ar_nar import AR_NAR
|
||||
from .experimental import Model as Experimental
|
||||
|
||||
def get_model(cfg, training=True):
|
||||
name = cfg.name
|
||||
|
||||
model = AR_NAR(
|
||||
n_tokens=cfg.tokens,
|
||||
d_model=cfg.dim,
|
||||
n_heads=cfg.heads,
|
||||
n_layers=cfg.layers,
|
||||
n_experts=cfg.experts,
|
||||
if not cfg.experimental:
|
||||
model = AR_NAR(
|
||||
n_tokens=cfg.tokens,
|
||||
d_model=cfg.dim,
|
||||
n_heads=cfg.heads,
|
||||
n_layers=cfg.layers,
|
||||
n_experts=cfg.experts,
|
||||
|
||||
p_dropout=cfg.dropout,
|
||||
p_dropout=cfg.dropout,
|
||||
|
||||
l_padding = cfg.input_alignment,
|
||||
l_padding = cfg.input_alignment,
|
||||
|
||||
training = training,
|
||||
config = cfg,
|
||||
)
|
||||
model._cfg = cfg
|
||||
training = training,
|
||||
config = cfg,
|
||||
)
|
||||
model._cfg = cfg
|
||||
else:
|
||||
model = Experimental(
|
||||
d_model=cfg.dim,
|
||||
n_layers=cfg.layers,
|
||||
n_heads=cfg.heads,
|
||||
p_dropout=cfg.dropout,
|
||||
|
||||
config = cfg,
|
||||
)
|
||||
|
||||
print(f"{name} ({next(model.parameters()).dtype}): {sum(p.numel() for p in model.parameters() if p.requires_grad)} parameters")
|
||||
|
||||
|
|
|
@ -64,7 +64,7 @@ try:
|
|||
def BitNetTransformerBlock_forward(self, x: Tensor, *args, **kwargs) -> Tensor:
|
||||
skip = x
|
||||
for attn, ffn in zip(self.layers, self.ffn_layers):
|
||||
if x.requires_grad and self.activation_checkpointing:
|
||||
if x.requires_grad and self.gradient_checkpointing:
|
||||
x, _ = checkpoint(attn, x, x, x, is_causal=True, *args, **kwargs, use_reentrant=False)
|
||||
else:
|
||||
x, _ = attn(x, x, x, is_causal=True, *args, **kwargs)
|
||||
|
@ -83,13 +83,13 @@ try:
|
|||
num_tokens: int,
|
||||
heads=8,
|
||||
ff_mult=4,
|
||||
activation_checkpointing = True
|
||||
gradient_checkpointing = True
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.transformer = BitNetTransformerBlock( dim=dim, depth=depth, heads=heads, ff_mult=ff_mult )
|
||||
self.norm = BitNetRMSNorm(dim)
|
||||
self.transformer.activation_checkpointing = activation_checkpointing
|
||||
self.transformer.gradient_checkpointing = gradient_checkpointing
|
||||
|
||||
def forward(self, x):
|
||||
x = self.transformer(x)
|
||||
|
@ -431,9 +431,9 @@ class Base(nn.Module):
|
|||
return -100
|
||||
|
||||
def loss_factor(self, k):
|
||||
if self.config is None:
|
||||
if self.hyper_config is None:
|
||||
return 1.0
|
||||
return self.config.loss_factors[k] if k in self.config.loss_factors else 1.0
|
||||
return self.hyper_config.loss_factors[k] if k in self.hyper_config.loss_factors else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -452,8 +452,8 @@ class Base(nn.Module):
|
|||
):
|
||||
super().__init__()
|
||||
self.training = training
|
||||
self.config = config
|
||||
self.activation_checkpointing = self.config.activation_checkpointing if self.config is not None else True
|
||||
self.hyper_config = config
|
||||
self.gradient_checkpointing = self.hyper_config.gradient_checkpointing if self.hyper_config is not None else True
|
||||
|
||||
self.n_tokens = n_tokens
|
||||
self.d_model = d_model
|
||||
|
@ -482,13 +482,13 @@ class Base(nn.Module):
|
|||
self.proms_emb = AudioEmbedding(
|
||||
[n_prom_tokens] * self.n_prom_levels, d_model,
|
||||
levels=self.n_prom_levels if self.version > 3 else None,
|
||||
sums=self.config.audio_embedding_sums if self.config is not None else True,
|
||||
sums=self.hyper_config.audio_embedding_sums if self.hyper_config is not None else True,
|
||||
)
|
||||
# [1025] + [1024] * 8
|
||||
self.resps_emb = AudioEmbedding(
|
||||
[n_resp_tokens] + [n_resp_tokens - 1] * (self.n_resp_levels - 1), d_model,
|
||||
levels=self.n_resp_levels if self.version > 3 else None,
|
||||
sums=self.config.audio_embedding_sums if self.config is not None else True
|
||||
sums=self.hyper_config.audio_embedding_sums if self.hyper_config is not None else True
|
||||
)
|
||||
|
||||
|
||||
|
@ -502,20 +502,20 @@ class Base(nn.Module):
|
|||
self.sep = nn.Parameter(torch.randn(d_model))
|
||||
|
||||
# ick, there has to be a better way
|
||||
hf_attention = self.config.attention if self.config is not None else None
|
||||
hf_attention = self.hyper_config.attention if self.hyper_config is not None else None
|
||||
|
||||
if self.config.attention == "auto":
|
||||
if self.hyper_config.attention == "auto":
|
||||
if "flash" in AVAILABLE_ATTENTIONS:
|
||||
self.config.attention = "flash"
|
||||
self.hyper_config.attention = "flash"
|
||||
elif "xformers" in AVAILABLE_ATTENTIONS:
|
||||
self.config.attention = "xformers"
|
||||
self.hyper_config.attention = "xformers"
|
||||
else:
|
||||
self.config.attention = "mem_efficient"
|
||||
self.hyper_config.attention = "mem_efficient"
|
||||
|
||||
if self.config.attention in ["xformers", "mem_efficient", "math", "flash"]:
|
||||
if self.hyper_config.attention in ["xformers", "mem_efficient", "math", "flash"]:
|
||||
hf_attention = None
|
||||
if self.config.attention not in AVAILABLE_ATTENTIONS:
|
||||
raise ValueError(f"Requesting attention `{self.config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
|
||||
if self.hyper_config.attention not in AVAILABLE_ATTENTIONS:
|
||||
raise ValueError(f"Requesting attention `{self.hyper_config.attention}` but is not available. Currently available: {AVAILABLE_ATTENTIONS}")
|
||||
|
||||
|
||||
if self.arch_type == "transformer":
|
||||
|
@ -538,12 +538,12 @@ class Base(nn.Module):
|
|||
num_hidden_layers=n_layers,
|
||||
num_attention_heads=n_heads,
|
||||
attention_dropout=p_dropout if training else 0.0,
|
||||
num_key_value_heads=self.config.kv_heads if self.config.kv_heads > 0 else n_heads,
|
||||
num_key_value_heads=self.hyper_config.kv_heads if self.hyper_config.kv_heads > 0 else n_heads,
|
||||
hidden_act="gelu",
|
||||
is_encoder_decoder=False,
|
||||
is_decoder=True,
|
||||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.activation_checkpointing,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
else:
|
||||
self.model = MixtralModel(MixtralConfig(
|
||||
|
@ -554,7 +554,7 @@ class Base(nn.Module):
|
|||
num_hidden_layers=n_layers,
|
||||
num_attention_heads=n_heads,
|
||||
attention_dropout=p_dropout if training else 0.0,
|
||||
num_key_value_heads=self.config.kv_heads if self.config.kv_heads > 0 else n_heads,
|
||||
num_key_value_heads=self.hyper_config.kv_heads if self.hyper_config.kv_heads > 0 else n_heads,
|
||||
sliding_window=75 * 12, # 12 second context window
|
||||
output_router_logits=training,
|
||||
hidden_act="gelu",
|
||||
|
@ -563,10 +563,10 @@ class Base(nn.Module):
|
|||
num_local_experts=n_experts,
|
||||
num_experts_per_tok=min(2, n_experts),
|
||||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.activation_checkpointing,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
|
||||
if self.activation_checkpointing and not self.model.gradient_checkpointing:
|
||||
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
|
||||
use_reentrant=False
|
||||
))
|
||||
|
@ -589,7 +589,7 @@ class Base(nn.Module):
|
|||
is_encoder_decoder=False,
|
||||
is_decoder=True,
|
||||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.activation_checkpointing,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
else:
|
||||
self.model = MixtralModel(MixtralConfig(
|
||||
|
@ -609,10 +609,10 @@ class Base(nn.Module):
|
|||
num_local_experts=n_experts,
|
||||
num_experts_per_tok=min(2, n_experts),
|
||||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.activation_checkpointing,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
|
||||
if self.activation_checkpointing and not self.model.gradient_checkpointing:
|
||||
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
|
||||
use_reentrant=False
|
||||
))
|
||||
|
@ -628,7 +628,7 @@ class Base(nn.Module):
|
|||
decoder_ffn_embed_dim=d_model * 4,
|
||||
decoder_layers=n_layers,
|
||||
dropout=p_dropout if training else 0.0,
|
||||
checkpoint_activations=self.activation_checkpointing,
|
||||
checkpoint_activations=self.gradient_checkpointing,
|
||||
activation_fn="gelu",
|
||||
use_layernorm=self.version < 3,
|
||||
use_biases=self.version < 3,
|
||||
|
@ -660,7 +660,7 @@ class Base(nn.Module):
|
|||
decoder_ffn_embed_dim=d_model * 4,
|
||||
decoder_layers=n_layers,
|
||||
dropout=p_dropout if training else 0.0,
|
||||
checkpoint_activations=self.activation_checkpointing,
|
||||
checkpoint_activations=self.gradient_checkpointing,
|
||||
activation_fn="gelu",
|
||||
use_glu=False, # self.version >= 3,
|
||||
|
||||
|
@ -673,7 +673,7 @@ class Base(nn.Module):
|
|||
|
||||
self.model = RetNetDecoder_HF(RetNetConfig_HF(**kwargs))
|
||||
|
||||
if self.activation_checkpointing and not self.model.gradient_checkpointing:
|
||||
if self.gradient_checkpointing and not self.model.gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
|
||||
use_reentrant=False
|
||||
))
|
||||
|
@ -684,13 +684,13 @@ class Base(nn.Module):
|
|||
depth=n_layers,
|
||||
heads=n_heads,
|
||||
ff_mult=4,
|
||||
activation_checkpointing=self.activation_checkpointing,
|
||||
gradient_checkpointing=self.gradient_checkpointing,
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(f'Unknown arch specified: {self.arch_type}')
|
||||
|
||||
if self.config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]:
|
||||
self.model = ml.replace_attention( self.model, klass=Llama_Attention, target=LlamaAttention, mode=self.config.attention )
|
||||
if self.hyper_config.attention in ["xformers", "auto", "mem_efficient", "math", "flash"]:
|
||||
self.model = ml.replace_attention( self.model, klass=Llama_Attention, target=LlamaAttention, mode=self.hyper_config.attention )
|
||||
|
||||
self.classifier = nn.Linear(d_model, n_resp_tokens)
|
||||
|
||||
|
@ -877,7 +877,7 @@ class Base(nn.Module):
|
|||
quant_levels: Tensor | None = None,
|
||||
):
|
||||
# old, "naive" way, no loss factoring
|
||||
if not self.config.loss_factors:
|
||||
if not self.hyper_config.loss_factors:
|
||||
target_list = []
|
||||
for batch in inputs:
|
||||
target = []
|
||||
|
|
|
@ -1,9 +1,20 @@
|
|||
"""
|
||||
This is an experiment to:
|
||||
* entertain a thought to try and abide by HF's transformers API (to benefit from caching better)
|
||||
* conform to a single embedding (instead of a bunch of them) by folding/unfolding inputs
|
||||
* stop trying to make a mixed AR+NAR model work since it seems lobotomized if I keep trying to enforce both recurrent and parallel inferencing (despite a penalty cost)
|
||||
+ I will not cave and go with codebook patterns, not yet.
|
||||
"""
|
||||
|
||||
from ..config import cfg
|
||||
|
||||
from ..data import fold_inputs, unfold_outputs
|
||||
|
||||
import torch
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from torch import Tensor
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
import random
|
||||
import math
|
||||
|
@ -21,144 +32,40 @@ except Exception as e:
|
|||
pass
|
||||
|
||||
try:
|
||||
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig
|
||||
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel, MambaConfig, MixerModel as MambaMixelModel, layer_norm_fn as MambaLayerNormFn, RMSNorm as MambaRMSNorm
|
||||
|
||||
def MambaMixelModel_forward(self, input_ids, inference_params=None, **mixer_kwargs):
|
||||
hidden_states = self.embedding(input_ids)
|
||||
residual = None
|
||||
for layer in self.layers:
|
||||
if self.gradient_checkpointing and hidden_states.requires_grad:
|
||||
hidden_states, residual = checkpoint( layer, hidden_states, residual, inference_params=inference_params, use_reentrant=False )
|
||||
else:
|
||||
hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params )
|
||||
if not self.fused_add_norm:
|
||||
residual = (hidden_states + residual) if residual is not None else hidden_states
|
||||
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
||||
else:
|
||||
# Set prenorm=False here since we don't need the residual
|
||||
hidden_states = MambaLayerNormFn(
|
||||
hidden_states,
|
||||
self.norm_f.weight,
|
||||
self.norm_f.bias,
|
||||
eps=self.norm_f.eps,
|
||||
residual=residual,
|
||||
prenorm=False,
|
||||
residual_in_fp32=self.residual_in_fp32,
|
||||
is_rms_norm=isinstance(self.norm_f, MambaRMSNorm)
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
MambaMixelModel.forward = MambaMixelModel_forward
|
||||
|
||||
AVAILABLE_ARCHES.append("mamba")
|
||||
except Exception as e:
|
||||
print("Error importing `mamba` arch:", e)
|
||||
pass
|
||||
|
||||
def _create_mask(l, device):
|
||||
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
|
||||
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
|
||||
return (seq < stop).float() # (b t)
|
||||
|
||||
def list_to_tensor(x_list: list[Tensor]):
|
||||
l = list(map(len, x_list))
|
||||
x = pad_sequence(x_list).t()
|
||||
|
||||
m = _create_mask(l, x_list[0].device)
|
||||
m = m.to(x)
|
||||
return x, m
|
||||
|
||||
# fold into a typical LLM sequence (one embedding rather than split embeddings)
|
||||
def fold(
|
||||
text_list = [],
|
||||
proms_list = [],
|
||||
resp_list = [],
|
||||
|
||||
ignore_index = None,
|
||||
|
||||
sep = 3,
|
||||
stop = 3,
|
||||
|
||||
text_tokens = 256,
|
||||
audio_tokens = 1024,
|
||||
audio_rvq_levels = cfg.model.prom_levels
|
||||
):
|
||||
|
||||
device = text_list[0].device
|
||||
batch_size = len(text_list)
|
||||
input_ids = [ [] for _ in range(batch_size) ]
|
||||
|
||||
offset = 0
|
||||
|
||||
sep = torch.Tensor([ sep ])
|
||||
stop = torch.Tensor([ stop ])
|
||||
|
||||
for i, text in enumerate(text_list):
|
||||
seq = text.to("cpu", dtype=torch.int64)
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( sep )
|
||||
|
||||
offset = text_tokens
|
||||
for i, prom in enumerate(proms_list):
|
||||
if ignore_index is not None:
|
||||
seq = torch.Tensor( [ ignore_index for _ in range( prom.shape[0] * prom.shape[1] ) ] ).to("cpu", dtype=torch.int64)
|
||||
else:
|
||||
seq = prom.flatten().to("cpu", dtype=torch.int64)
|
||||
for idx, token in enumerate( seq ):
|
||||
token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) )
|
||||
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( sep )
|
||||
|
||||
offset = text_tokens + (audio_tokens * audio_rvq_levels)
|
||||
for i, resp in enumerate(resp_list):
|
||||
seq = resp.flatten().to("cpu", dtype=torch.int64)
|
||||
for idx, token in enumerate( seq ):
|
||||
token += offset + ( audio_tokens * ( idx % audio_rvq_levels ) )
|
||||
input_ids[i].append( seq )
|
||||
input_ids[i].append( stop )
|
||||
|
||||
for i, batch in enumerate(input_ids):
|
||||
input_ids[i] = torch.concat(input_ids[i], dim=-1).to(device=device, dtype=torch.int64)
|
||||
|
||||
return list_to_tensor(input_ids)
|
||||
|
||||
# unfold from one unified token ID space to separate token spaces
|
||||
def unfold(
|
||||
input_ids,
|
||||
|
||||
sep = 3,
|
||||
stop = 3,
|
||||
|
||||
text_tokens = 256,
|
||||
audio_tokens = 1024,
|
||||
audio_rvq_levels = cfg.model.prom_levels
|
||||
):
|
||||
device = input_ids.device
|
||||
batch_size = input_ids.shape[0]
|
||||
|
||||
text_list = [ [] for _ in range(batch_size) ]
|
||||
prom_list = [ [] for _ in range(batch_size) ]
|
||||
resp_list = [ [] for _ in range(batch_size) ]
|
||||
|
||||
for i, batch in enumerate( input_ids ):
|
||||
for idx, token in enumerate( batch ):
|
||||
id = token.item()
|
||||
if id == sep or id == stop:
|
||||
continue
|
||||
|
||||
if 0 <= id and id < text_tokens:
|
||||
text_list[i].append( id )
|
||||
elif text_tokens <= id and id < text_tokens + (audio_tokens * audio_rvq_levels):
|
||||
prom_list[i].append( (id - text_tokens) % audio_tokens )
|
||||
elif text_tokens + (audio_tokens * audio_rvq_levels) <= id:
|
||||
resp_list[i].append( (id - text_tokens) % audio_tokens )
|
||||
|
||||
prom_len = len(prom_list[i])
|
||||
if prom_len % audio_rvq_levels == 0 and False:
|
||||
prom_list[i] = torch.Tensor(prom_list[i]).reshape( audio_rvq_levels, prom_len // audio_rvq_levels ).t()
|
||||
else:
|
||||
bins = [ [] for _ in range(audio_rvq_levels) ]
|
||||
for pos in range( prom_len ):
|
||||
rvq = pos % audio_rvq_levels
|
||||
bins[rvq].append( prom_list[i][pos] )
|
||||
nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels
|
||||
bins = bins[:nearest]
|
||||
prom_list[i] = torch.Tensor(bins).t().to(dtype=torch.int64)
|
||||
|
||||
|
||||
resp_len = len(resp_list[i])
|
||||
if len(resp_list[i]) % audio_rvq_levels == 0 and False:
|
||||
resp_list[i] = torch.Tensor(resp_list[i]).reshape( audio_rvq_levels, resp_len // audio_rvq_levels ).t()
|
||||
else:
|
||||
bins = [ [] for _ in range(audio_rvq_levels) ]
|
||||
for pos in range( resp_len ):
|
||||
rvq = pos % audio_rvq_levels
|
||||
bins[rvq].append( resp_list[i][pos] )
|
||||
nearest = ( len(bins) // audio_rvq_levels ) * audio_rvq_levels
|
||||
bins = bins[:nearest]
|
||||
resp_list[i] = torch.Tensor(bins).t().to(dtype=torch.int64)
|
||||
|
||||
text_list[i] = torch.Tensor( text_list[i] ).to(dtype=torch.int64)
|
||||
|
||||
return dict(
|
||||
text_list=text_list,
|
||||
prom_list=prom_list,
|
||||
resp_list=resp_list
|
||||
)
|
||||
|
||||
|
||||
SELECTED_ARCH = cfg.model.arch_type
|
||||
if SELECTED_ARCH not in AVAILABLE_ARCHES:
|
||||
|
@ -179,9 +86,12 @@ class Model(LlmArchClass):
|
|||
n_heads=16,
|
||||
p_dropout=0.1,
|
||||
|
||||
attention_backend=None,
|
||||
activation_checkpointing=True,
|
||||
config = None,
|
||||
):
|
||||
self.hyper_config = config
|
||||
|
||||
hf_attention = config.attention if config is not None else None
|
||||
gradient_checkpointing = config.gradient_checkpointing if config is not None else True
|
||||
|
||||
if SELECTED_ARCH == "llama":
|
||||
super().__init__(config=LlamaConfig(
|
||||
|
@ -197,10 +107,10 @@ class Model(LlmArchClass):
|
|||
hidden_act="gelu",
|
||||
is_encoder_decoder=False,
|
||||
is_decoder=True,
|
||||
attn_implementation=attention_backend,
|
||||
attn_implementation=hf_attention,
|
||||
))
|
||||
|
||||
if activation_checkpointing:
|
||||
if gradient_checkpointing:
|
||||
self.gradient_checkpointing_enable(gradient_checkpointing_kwargs=dict(
|
||||
use_reentrant=False
|
||||
))
|
||||
|
@ -209,9 +119,11 @@ class Model(LlmArchClass):
|
|||
vocab_size=256 + (1024 * cfg.model.prom_levels) + (1024 * cfg.model.prom_levels) + 1,
|
||||
d_model=d_model,
|
||||
n_layer=n_layers*2,
|
||||
#ssm_cfg={"layer": "Mamba2"},
|
||||
#ssm_cfg={"layer": "Mamba2"}, # will ALWAYS nan
|
||||
))
|
||||
|
||||
self.backbone.gradient_checkpointing = gradient_checkpointing
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -293,9 +205,9 @@ def example_usage():
|
|||
proms_list = proms_list[:1]
|
||||
resps_list = resps_list[:1]
|
||||
|
||||
input_ids, attention_mask = fold(text_list, proms_list, resps_list)
|
||||
target_ids, target_attention_mask = fold(text_list, proms_list, resps_list, ignore_index=-100)
|
||||
prefix_input_ids, prefix_attention_mask = fold(text_list, proms_list)
|
||||
input_ids, attention_mask = fold_inputs(text_list, proms_list, resps_list)
|
||||
target_ids, target_attention_mask = fold_inputs(text_list, proms_list, resps_list, ignore_index=-100)
|
||||
prefix_input_ids, prefix_attention_mask = fold_inputs(text_list, proms_list)
|
||||
|
||||
kwargs = {}
|
||||
model = Model(**kwargs).to(device)
|
||||
|
@ -373,7 +285,7 @@ def example_usage():
|
|||
else:
|
||||
output = model.generate(input_ids=prefix_input_ids, attention_mask=prefix_attention_mask, max_length=steps, eos_token_id=3, do_sample=False)
|
||||
|
||||
unfolded = unfold( output )
|
||||
unfolded = unfold_outputs( output )
|
||||
for i, batch in enumerate(unfolded["resp_list"]):
|
||||
_ = decode_to_file(batch.to(device=device), f"data/{SELECTED_ARCH}.{cfg.audio_backend}.{i}.{name}.wav", device=device)
|
||||
|
||||
|
|
|
@ -15,7 +15,29 @@ from torch import Tensor, einsum, nn
|
|||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from ..utils import wrapper as ml
|
||||
from .adaln import AdaLN
|
||||
|
||||
class AdaLN(nn.Module):
|
||||
def __init__(self, d_model, n_levels, eps=1e-5, k=0.1, c=2):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.emb = nn.Embedding(n_levels, d_model * 2)
|
||||
self.k = k
|
||||
self.c = c
|
||||
nn.init.zeros_(self.emb.weight)
|
||||
|
||||
def forward(self, x, l):
|
||||
h = F.layer_norm(x, x.shape[-1:], eps=self.eps)
|
||||
|
||||
# The initial implementation (https://github.com/enhuiz/vall-e/blob/fbf023448c08e55c0422eefed7fc234cf8b76680/vall_e/vall_e/base.py#L135)
|
||||
# performed worse than vanilla LayerNorm.
|
||||
# The authors mentioned another AdaNorm paper (https://openreview.net/pdf?id=HyxndNrxLB) as they introduce AdaLN.
|
||||
# Did they use AdaNorm inside AdaLN? (as follows)
|
||||
h = self.c * (1 - (self.k * h).detach()) * h
|
||||
|
||||
logγ, β = self.emb(l).unsqueeze(1).chunk(2, dim=-1)
|
||||
y = logγ.exp() * h + β
|
||||
|
||||
return y
|
||||
|
||||
class SinusoidalEmbedding(nn.Module):
|
||||
def __init__(self, d_model):
|
||||
|
|
|
@ -5,6 +5,7 @@ from .data import create_train_val_dataloader
|
|||
from .emb import qnt
|
||||
|
||||
from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc
|
||||
from .data import fold_inputs, unfold_outputs
|
||||
|
||||
import auraloss
|
||||
import json
|
||||
|
@ -25,12 +26,29 @@ mel_stft_loss = auraloss.freq.MelSTFTLoss(cfg.sample_rate, device="cpu")
|
|||
|
||||
def train_feeder(engine, batch):
|
||||
with torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp):
|
||||
engine(
|
||||
text_list=batch["text"],
|
||||
proms_list=[prom[:, :engine._cfg.prom_levels] for prom in batch["proms"]], # reduce the input prompt to the target prom level
|
||||
resps_list=batch["resps"],
|
||||
lang_list=batch["lang"],
|
||||
)
|
||||
if engine.hyper_config.experimental:
|
||||
input_ids, attention_mask = fold_inputs(
|
||||
text_list=batch["text"],
|
||||
prom_list=batch["proms"],
|
||||
resp_list=batch["resps"],
|
||||
)
|
||||
target_ids, target_attention_mask = fold_inputs(
|
||||
text_list=batch["text"],
|
||||
prom_list=batch["proms"],
|
||||
resp_list=batch["resps"],
|
||||
ignore_index=-100
|
||||
)
|
||||
engine(
|
||||
input_ids=input_ids,
|
||||
labels=target_ids
|
||||
)
|
||||
else:
|
||||
engine(
|
||||
text_list=batch["text"],
|
||||
proms_list=[prom[:, :engine._cfg.prom_levels] for prom in batch["proms"]], # reduce the input prompt to the target prom level
|
||||
resps_list=batch["resps"],
|
||||
lang_list=batch["lang"],
|
||||
)
|
||||
|
||||
losses = engine.gather_attribute("loss")
|
||||
stat = engine.gather_attribute("stats")
|
||||
|
@ -48,22 +66,6 @@ def train_feeder(engine, batch):
|
|||
|
||||
@torch.inference_mode()
|
||||
def run_eval(engines, eval_name, dl):
|
||||
AR = None
|
||||
NAR = None
|
||||
AR_NAR = None
|
||||
|
||||
names = []
|
||||
for name, engine in engines.items():
|
||||
if name[:6] == "ar+nar":
|
||||
AR_NAR = engine
|
||||
elif name[:2] == "ar":
|
||||
AR = engine
|
||||
elif name[:3] == "nar":
|
||||
NAR = engine
|
||||
else:
|
||||
continue
|
||||
names.append(name)
|
||||
|
||||
stats = defaultdict(list)
|
||||
stats['loss'] = []
|
||||
|
||||
|
@ -101,44 +103,22 @@ def run_eval(engines, eval_name, dl):
|
|||
batch: dict = to_device(next(iter(dl)), cfg.device)
|
||||
processed += len(batch["text"])
|
||||
|
||||
# if we're training both models, provide output for both
|
||||
if AR is not None and NAR is not None:
|
||||
name = "+".join(names)
|
||||
for name in engines:
|
||||
engine = engines[name]
|
||||
|
||||
resps_list = AR(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.ar_temperature)
|
||||
resps_list = [ r.unsqueeze(-1) for r in resps_list ]
|
||||
resps_list = NAR(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], resps_list=resps_list, sampling_temperature=cfg.evaluation.nar_temperature)
|
||||
if engine.hyper_config.experimental:
|
||||
input_ids, attention_mask = fold_inputs(
|
||||
text_list=batch["text"],
|
||||
proms_list=batch["proms"],
|
||||
)
|
||||
output = engine.model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=cfg.evaluation.steps, eos_token_id=3, do_sample=False)
|
||||
resps_list = unfold_outputs( output )["resp_list"]
|
||||
else:
|
||||
resps_list = engine(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.ar_temperature)
|
||||
resps_list = [ r.unsqueeze(-1) for r in resps_list ]
|
||||
resps_list = engine(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], resps_list=resps_list, sampling_temperature=cfg.evaluation.nar_temperature)
|
||||
|
||||
process( name, batch, resps_list )
|
||||
else:
|
||||
for name in engines:
|
||||
model = engines[name]
|
||||
|
||||
if name.startswith("ar+nar"):
|
||||
resps_list = AR_NAR(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.ar_temperature)
|
||||
resps_list = [ r.unsqueeze(-1) for r in resps_list ]
|
||||
resps_list = AR_NAR(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], resps_list=resps_list, sampling_temperature=cfg.evaluation.nar_temperature)
|
||||
elif name.startswith("ar"):
|
||||
resps_list = model(
|
||||
text_list=batch["text"],
|
||||
proms_list=batch["proms"],
|
||||
lang_list=batch["lang"],
|
||||
max_steps=cfg.evaluation.steps,
|
||||
sampling_temperature=cfg.evaluation.ar_temperature,
|
||||
)
|
||||
resps_list = [r.unsqueeze(-1) for r in resps_list]
|
||||
elif name.startswith("nar"):
|
||||
resps_list = model(
|
||||
text_list=batch["text"],
|
||||
proms_list=batch["proms"],
|
||||
lang_list=batch["lang"],
|
||||
resps_list=[r[..., 0].unsqueeze(-1) for r in batch["resps"]],
|
||||
sampling_temperature=cfg.evaluation.nar_temperature,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(name)
|
||||
|
||||
process( name, batch, resps_list )
|
||||
|
||||
|
||||
stats = {k: sum(v) / len(v) for k, v in stats.items()}
|
||||
|
|
Loading…
Reference in New Issue
Block a user