added FP8 support through NVIDIA/TransformerEngine, added RetNet_HF through syncdoth/RetNet (as an alternative to branch away from torchscale)

This commit is contained in:
mrq 2024-04-08 20:14:51 -05:00
parent 7075c2a5f0
commit 9d97eb5104
13 changed files with 1958 additions and 18 deletions

View File

@ -176,6 +176,11 @@ class Model:
p_ar_level: float | str = "auto" # determines odds of selecting the AR (level 0) when training, "auto" for default behavior
frozen_params: list[str] = field(default_factory=lambda: []) # frozen parameters that are not updated when training
@property
# required for fp8 as the lengths needs to be divisible by 8
def input_alignment(self):
return 8 if cfg.fp8.enabled else 0
@property
def full_name(self):
name = [ self.name ]
@ -503,6 +508,10 @@ class Trainer:
return torch.float16
if self.weight_dtype == "bfloat16":
return torch.bfloat16
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@ -527,6 +536,10 @@ class Inference:
return torch.bfloat16
if self.weight_dtype == "int8":
return torch.int8
if self.weight_dtype == "float8_e5m2":
return torch.float8_e5m2
if self.weight_dtype == "float8_e4m3fn":
return torch.float8_e4m3fn
return torch.float32
@dataclass()
@ -540,6 +553,11 @@ class BitsAndBytes:
bitnet: bool = False
@dataclass()
class FP8:
enabled: bool = False
backend: str = "te"
@dataclass()
class Config(_Config):
device: str = "cuda"
@ -554,6 +572,8 @@ class Config(_Config):
inference: Inference = field(default_factory=lambda: Inference)
bitsandbytes: BitsAndBytes = field(default_factory=lambda: BitsAndBytes)
fp8: FP8 = field(default_factory=lambda: FP8)
@property
def sample_rate(self):
return 24_000
@ -620,6 +640,7 @@ try:
except Exception as e:
print(e)
pass

View File

@ -42,6 +42,7 @@ from typing import Any, Protocol
from functools import cached_property
from .base import TrainFeeder
from ..utils import wrapper as ml
_logger = logging.getLogger(__name__)
@ -222,8 +223,9 @@ class Engine():
return self._global_grad_norm
def traverse(self, *args, **kwargs):
with torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp):
with ml.autocast():
self.forward(*args, **kwargs)
losses = self.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()

View File

@ -25,6 +25,7 @@ from deepspeed import DeepSpeedEngine, DeepSpeedConfig, comm as dist, init_distr
from deepspeed.accelerator import get_accelerator
from ..utils.distributed import init_distributed, distributed_initialized
from ..utils import wrapper as ml
if not distributed_initialized() and cfg.trainer.backend == "deepspeed":
init_distributed(init_deepspeed_dist)
@ -106,8 +107,9 @@ class Engine(DeepSpeedEngine):
print(str(e))
def traverse(self, *args, **kwargs):
with torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp):
with ml.autocast():
self.forward(*args, **kwargs)
losses = self.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()

0
vall_e/ext/__init__.py Normal file
View File

View File

@ -0,0 +1,3 @@
# from https://github.com/syncdoth/RetNet/
# there is no proper build system and I can't be assed to fork it or make it a submodule that plays nicely with python's import system

View File

@ -0,0 +1,117 @@
from dataclasses import dataclass
import json
from transformers.configuration_utils import PretrainedConfig
def load_config_from_json(config_file):
with open(config_file, 'r') as f:
config = json.load(f)
config = RetNetConfig.from_dict(config)
return config
@dataclass
class RetNetConfig(PretrainedConfig):
model_type = "retnet"
initializer_range: float = 0.02
activation_fn: str = "gelu"
dropout: float = 0.0 # dropout probability
activation_dropout: float = 0.0 # dropout probability after activation in FFN.
drop_path_rate: float = 0.0
decoder_embed_dim: int = 768 # decoder embedding dimension
decoder_value_embed_dim: int = 1280 # decoder value embedding dimension
decoder_ffn_embed_dim: int = 1280 # decoder embedding dimension for FFN
decoder_layers: int = 12 # num decoder layers
decoder_retention_heads: int = 3 # num decoder retention heads
decoder_normalize_before: bool = True # apply layernorm before each decoder block
layernorm_embedding: bool = False # add layernorm to embedding
no_scale_embedding: bool = True # if True, dont scale embeddings
recurrent_chunk_size: int = 512
use_lm_decay: bool = False
use_glu: bool = True # use GLU instead of FFN
z_loss_coeff: float = 0.0 # coefficient for z loss: TODO: 1e-4
deepnorm: bool = False
subln: bool = True
use_ffn_rms_norm: bool = False
layernorm_eps: float = 1e-6
tie_word_embeddings: bool = False
def __init__(
self,
vocab_size: int = 50257,
initializer_range: float = 0.02,
is_decoder: bool = True,
pad_token_id: int = 0,
eos_token_id: int = 0,
output_retentions: bool = False,
use_cache: bool = True,
forward_impl: str = 'parallel',
activation_fn: str = "gelu",
dropout: float = 0.0, # dropout probability
activation_dropout: float = 0.0, # dropout probability after activation in FFN.
drop_path_rate: float = 0.0,
decoder_embed_dim: int = 768, # decoder embedding dimension
decoder_value_embed_dim: int = 1280, # decoder value embedding dimension
decoder_ffn_embed_dim: int = 1280, # decoder embedding dimension for FFN
decoder_layers: int = 12, # num decoder layers
decoder_retention_heads: int = 3, # num decoder retention heads
decoder_normalize_before: bool = True, # apply layernorm before each decoder block
layernorm_embedding: bool = False, # add layernorm to embedding
no_scale_embedding: bool = True, # if True, dont scale embeddings
recurrent_chunk_size: int = 512,
use_glu: bool = True, # use GLU instead of FFN
z_loss_coeff: float = 0.0, # coefficient for z loss: TODO: 1e-4
use_lm_decay: bool = False,
deepnorm: bool = True,
subln: bool = True,
use_ffn_rms_norm: bool = False, # use RMSNorm instead of LayerNorm in FFN
layernorm_eps: float = 1e-6,
tie_word_embeddings: bool = False,
**kwargs):
self.vocab_size = vocab_size
self.initializer_range = initializer_range
self.output_retentions = output_retentions
self.use_lm_decay = use_lm_decay
self.use_glu = use_glu
self.z_loss_coeff = z_loss_coeff
# size related
self.decoder_embed_dim = decoder_embed_dim
self.decoder_value_embed_dim = decoder_value_embed_dim
self.decoder_retention_heads = decoder_retention_heads
self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
self.decoder_layers = decoder_layers
# normalization related
self.decoder_normalize_before = decoder_normalize_before
self.activation_fn = activation_fn
self.dropout = dropout
self.drop_path_rate = drop_path_rate
self.activation_dropout = activation_dropout
self.no_scale_embedding = no_scale_embedding
self.layernorm_embedding = layernorm_embedding
self.deepnorm = deepnorm
self.subln = subln
self.use_ffn_rms_norm = use_ffn_rms_norm
self.layernorm_eps = layernorm_eps
# Blockwise
self.recurrent_chunk_size = recurrent_chunk_size
self.forward_impl = forward_impl
if self.deepnorm:
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.decoder_normalize_before = True
self.deepnorm = False
super().__init__(is_decoder=is_decoder,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
use_cache=use_cache,
tie_word_embeddings=tie_word_embeddings,
**kwargs)
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)

File diff suppressed because it is too large Load Diff

View File

@ -20,7 +20,9 @@ def get_model(cfg, training=True):
n_layers=cfg.layers,
n_experts=cfg.experts,
training=training,
l_padding = cfg.input_alignment,
training = training,
config = cfg,
)
model._cfg = cfg

View File

@ -300,7 +300,7 @@ class AR_NAR(Base):
def example_usage():
cfg.trainer.backend = "local"
#cfg.trainer.backend = "local"
from functools import partial
from einops import repeat
@ -317,7 +317,7 @@ def example_usage():
def tokenize(content, lang_marker="en"):
split = content.split(" ")
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
return torch.tensor([*map(symmap.get, phones)]).to()
return torch.tensor([*map(symmap.get, phones)])
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
@ -344,6 +344,8 @@ def example_usage():
'n_heads': 16, # 4, # 16, # 24
'n_layers': 12, # 32
'n_experts': 1,
'l_padding': 8,
}
"""
kwargs = {
@ -366,6 +368,7 @@ def example_usage():
steps = 500
optimizer = ml.Prodigy(model.parameters(), lr=1.0)
#optimizer = ml.AdamW(model.parameters(), lr=1.0e-4)
engine = Engine(model=model, optimizer=optimizer)
# copy embeddings if requested
@ -392,7 +395,7 @@ def example_usage():
param.requires_grad_(False)
engine._frozen_params.add(param)
if cfg.bitsandbytes.enabled and cfg.bitsandbytes.replace:
# if cfg.bitsandbytes.enabled and cfg.bitsandbytes.replace:
model.model = ml.replace_linear( model.model )
torch.save( {

View File

@ -29,6 +29,14 @@ except Exception as e:
print("Error importing `retnet` arch:", e)
pass
from .retnet_hf import RetNetDecoder as RetNetDecoder_HF, RetNetConfig as RetNetConfig_HF
"""
try:
except Exception as e:
print("Error importing `retnet-hf` arch:", e)
pass
"""
try:
from transformers import LlamaModel, LlamaConfig
except Exception as e:
@ -44,6 +52,7 @@ except Exception as e:
try:
from bitnet.bit_transformer import Transformer as BitNetTransformerBlock, RMSNorm as BitNetRMSNorm
# override because bitnet's BitNetTransformer includes an embedding input / classifier output layers inside of it, which isn't favorable
class BitNetTransformer(nn.Module):
def __init__(
self,
@ -159,7 +168,6 @@ class Embedding(nn.Embedding):
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
if len(x_list) == 0:
return []
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
class MultiEmbedding(nn.Module):
@ -308,7 +316,9 @@ class Base(nn.Module):
n_layers: int = 12,
p_dropout: float = 0.1,
n_experts: int=1,
n_experts: int = 1,
l_padding: int = 0,
training = True,
config = None,
@ -324,6 +334,8 @@ class Base(nn.Module):
self.n_layers = n_layers
self.n_experts = n_experts
self.l_padding = l_padding
# +1 to include the stop token
# to-do: undo this dogshit mistake; tasks tokens should be delegated to its own embedding
n_prom_tokens = n_tokens
@ -460,6 +472,27 @@ class Base(nn.Module):
))
self.model = RetNetDecoder(RetNetConfig(**kwargs))
elif self.arch_type == "retnet-hf":
kwargs = dict(
vocab_size=n_resp_tokens,
decoder_embed_dim=d_model,
decoder_value_embed_dim =d_model * 2,
decoder_retention_heads=n_heads,
decoder_ffn_embed_dim=d_model * 4,
decoder_layers=n_layers,
dropout=p_dropout if training else 0.0,
checkpoint_activations=self.activation_checkpointing,
activation_fn="gelu",
use_glu=False, # self.version >= 3,
recurrent_chunk_size=self.recurrent_chunk_size if self.causal else 0,
decoder_normalize_before=True,
deepnorm=False,
subln=True,
)
self.model = RetNetDecoder_HF(RetNetConfig_HF(**kwargs))
elif self.arch_type == "bitnet":
self.model = BitNetTransformer(
num_tokens=n_resp_tokens,
@ -514,19 +547,50 @@ class Base(nn.Module):
sep=self.sep,
)
x, m = list_to_tensor(x_list)
aux_loss = None
device = x.device
# pad our input and mask, but retain the original length by doing it after
if self.l_padding and x.shape[1] % self.l_padding != 0:
# pad input
shape = list(x.shape)
shape[1] = self.l_padding - shape[1] % self.l_padding
padding = torch.zeros(shape, dtype=x.dtype, device=x.device)
x = torch.cat([x, padding], dim=1)
# pad mask
shape[2] = 1
padding = torch.zeros(shape, dtype=x.dtype, device=x.device)
m = torch.cat([m, padding], dim=1)
if state is not None and self.arch_type == "retnet":
# prefill
if len(state) == 0:
prefill_size = x.shape[1]
# run the initial prompt to fill the KV cache
if self.arch_type == "retnet":
for n in range(prefill_size):
xi = x[:, n, :].unsqueeze(1)
self.model(xi, incremental_state=state, token_embeddings=xi, features_only=True)
elif self.arch_type == "retnet-hf":
for n in range(prefill_size):
xi = x[:, n, :].unsqueeze(1)
kwargs = dict(
#attention_mask=m,
inputs_embeds=x,
past_key_values=state[-1],
use_cache=state is not None,
# return_dict=True,
)
out = self.model(**kwargs)
state.append(out.past_key_values)
# grab last token(s)
x = x[:, -1, :].unsqueeze(1)
@ -566,6 +630,21 @@ class Base(nn.Module):
x, _ = self.model(x, incremental_state=state, token_embeddings=x, features_only=True)
if _ is not None and "l_aux" in _ and self.n_experts > 1:
aux_loss = torch.sum(torch.stack([ t for t in _["l_aux"] if t is not None])) * 0.001
elif self.arch_type == "retnet-hf":
kwargs = dict(
#attention_mask=m,
inputs_embeds=x,
past_key_values=state,
use_cache=False, #state is not None,
# return_dict=True,
)
t = self.model(**kwargs)
x = t[0]
if state is not None:
state = t[1]
elif self.arch_type == "bitnet":
x = self.model(x)
# output projection layer with masking

View File

@ -1,3 +1,46 @@
# https://github.com/microsoft/torchscale
from torchscale.architecture.config import RetNetConfig
from torchscale.architecture.retnet import RetNetDecoder
# from retnet import RetNet
# override MultiScaleRetention's forward because training with te throws an error
from torchscale.component.multiscale_retention import MultiScaleRetention, theta_shift
def MultiScaleRetention_forward(
self,
x,
rel_pos,
chunkwise_recurrent=False,
incremental_state=None
):
bsz, tgt_len, _ = x.size()
(sin, cos), inner_mask = rel_pos
q = self.q_proj(x)
k = self.k_proj(x) * self.scaling
v = self.v_proj(x)
g = self.g_proj(x)
q = q.view(bsz, tgt_len, self.num_heads, self.key_dim).transpose(1, 2)
k = k.view(bsz, tgt_len, self.num_heads, self.key_dim).transpose(1, 2)
qr = theta_shift(q, sin, cos)
kr = theta_shift(k, sin, cos)
if incremental_state is not None:
output = self.recurrent_forward(qr, kr, v, inner_mask, incremental_state)
elif chunkwise_recurrent:
output = self.chunk_recurrent_forward(qr, kr, v, inner_mask)
else:
output = self.parallel_forward(qr, kr, v, inner_mask)
output = self.group_norm(output).reshape(bsz, tgt_len, self.head_dim * self.num_heads)
output = self.gate_fn(g) * output
output = self.out_proj(output)
return output
MultiScaleRetention.forward = MultiScaleRetention_forward

199
vall_e/models/retnet_hf.py Normal file
View File

@ -0,0 +1,199 @@
# https://github.com/syncdoth/RetNet/
from ..ext.retnet_hf.configuration_retnet import RetNetConfig
from ..ext.retnet_hf.modeling_retnet import RetNetModel as RetNetDecoder
# things we're overriding or required to override
from ..ext.retnet_hf.modeling_retnet import RetNetDecoderLayer, MultiScaleRetention, theta_shift, split_heads, RMSNorm, FeedForwardNetwork, get_activation_fn, LayerNorm, RetNetRelPos
import torch
import math
from typing import Dict, List, Optional, Tuple, Union
# required to have compatibile LayerNorm
def FeedForwardNetwork_init(
self,
embed_dim,
ffn_dim,
activation_fn,
dropout,
activation_dropout,
layernorm_eps,
subln=True,
use_rms_norm=False,
):
super(FeedForwardNetwork, self).__init__()
self.embed_dim = embed_dim
self.activation_fn = get_activation_fn(activation=str(activation_fn))
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = torch.nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = torch.nn.Linear(ffn_dim, self.embed_dim)
self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
FeedForwardNetwork.__init__ = FeedForwardNetwork_init
# removes embed_tokens
def RetNetModel_init(
self,
config: RetNetConfig,
embed_tokens: torch.nn.Embedding = None,
tensor_parallel: bool = False,
):
super(RetNetDecoder, self).__init__(config)
self.config = config
self.dropout_module = torch.nn.Dropout(config.dropout)
self.embed_dim = config.decoder_embed_dim
self.embed_scale = (
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
)
"""
if embed_tokens is None:
embed_tokens = torch.nn.Embedding(
config.vocab_size, config.decoder_embed_dim, config.pad_token_id
)
"""
self.embed_tokens = None
if config.layernorm_embedding:
self.layernorm_embedding = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
else:
self.layernorm_embedding = None
self.layers = torch.nn.ModuleList([])
for i in range(config.decoder_layers):
self.layers.append(
RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
)
self.decoder_layers = len(self.layers)
if config.decoder_normalize_before:
self.layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
else:
self.layer_norm = None
self.retnet_rel_pos = RetNetRelPos(config)
self.recurrent_chunk_size = config.recurrent_chunk_size
if config.deepnorm:
init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.div_(init_scale)
if config.subln and not config.use_glu:
init_scale = math.sqrt(math.log(config.decoder_layers * 2))
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.mul_(init_scale)
self.gradient_checkpointing = True
self.post_init()
RetNetDecoder.__init__ = RetNetModel_init
# restores bias in our FFNs
def RetNetDecoderLayer_init(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
super(RetNetDecoderLayer, self).__init__()
self.config = config
self.embed_dim = config.decoder_embed_dim
self.dropout_module = torch.nn.Dropout(config.dropout)
if config.drop_path_rate > 0:
drop_path_prob = np.linspace(
0, config.drop_path_rate, config.decoder_layers
)[depth]
self.drop_path = DropPath(drop_path_prob)
else:
self.drop_path = None
self.retention = MultiScaleRetention(
config, use_bias=True, tensor_parallel=tensor_parallel
)
self.normalize_before = config.decoder_normalize_before
self.retention_layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
self.ffn_dim = config.decoder_ffn_embed_dim
self.ffn = self.build_ffn()
self.final_layer_norm = LayerNorm(self.embed_dim, eps=config.layernorm_eps) # RMSNorm
if config.deepnorm:
self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
else:
self.alpha = 1.0
RetNetDecoderLayer.__init__ = RetNetDecoderLayer_init
# fixes backwards when using te's autocast
def MultiScaleRetention_forward(
self,
hidden_states: torch.Tensor,
rel_pos: Tuple[Tuple[torch.Tensor]],
retention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
forward_impl: str = "parallel",
output_retentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
B, T, H = hidden_states.size()
(sin, cos), decay_mask = rel_pos
# projections
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states) * self.scaling # for scaled dot product
v = self.v_proj(hidden_states)
g = self.g_proj(hidden_states)
# multi-head
q, k, v = split_heads((q, k, v), B, T, self.num_heads)
# rotate
# NOTE: theta_shift has bug with mps device.
qr = theta_shift(q, sin, cos)
kr = theta_shift(k, sin, cos)
# retention
if forward_impl == "parallel":
retention_out, curr_kv, retention_weights = self.parallel_retention(
qr, kr, v, decay_mask
)
elif forward_impl == "recurrent":
retention_out, curr_kv = self.recurrent_retention(
qr,
kr,
v,
decay_mask,
past_key_value=past_key_value,
retention_mask=retention_mask,
)
elif forward_impl == "chunkwise":
retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
else:
raise ValueError(f"forward_impl {forward_impl} not supported.")
# concaat heads
normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
# out gate & proj
out = self.gate_fn(g) * normed
out = self.out_proj(out)
outputs = (out, curr_kv)
if output_retentions:
outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
return outputs
MultiScaleRetention.forward = MultiScaleRetention_forward

View File

@ -75,6 +75,19 @@ def autocast_forward( func ):
return wrapper
Embedding.forward = autocast_forward(Embedding.forward)
if cfg.fp8.enabled:
import transformer_engine.pytorch as te
Linear = te.Linear
@contextmanager
def autocast():
yield te.fp8_autocast(enabled=True)
else:
@contextmanager
def autocast():
yield torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp)
if cfg.bitsandbytes.injects and cfg.bitsandbytes.enabled:
torch.nn.Linear = Linear
torch.nn.Embedding = Embedding
@ -83,6 +96,7 @@ if cfg.bitsandbytes.injects and cfg.bitsandbytes.enabled:
torch.optim.AdamW = AdamW
torch.optim.SGD = SGD
# disgusting kludge, but it works (just realized BitNet has its own replacement routine)
def replace_linear( model ):
device = next(model.parameters()).device