huggingface zerogpu cringe
This commit is contained in:
parent
814146a5e0
commit
9e27d2e02e
0
vall_e/emb/codecs/__init__.py
Normal file
0
vall_e/emb/codecs/__init__.py
Normal file
|
@ -18,7 +18,12 @@ except Exception as e:
|
||||||
pass
|
pass
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
from transformers import pipeline
|
from transformers import pipeline
|
||||||
|
except Exception as e:
|
||||||
|
def _kludge_cringe():
|
||||||
|
raise e
|
||||||
|
pipeline = _kludge_cringe
|
||||||
|
|
||||||
from functools import cache
|
from functools import cache
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
|
|
|
@ -123,16 +123,6 @@ class FiniteAudioEncoder(nn.Module):
|
||||||
self.level_weights = nn.Parameter(torch.ones(n_levels) / math.sqrt(n_levels)) if use_level_weights else None
|
self.level_weights = nn.Parameter(torch.ones(n_levels) / math.sqrt(n_levels)) if use_level_weights else None
|
||||||
self.use_ffn = use_ffn
|
self.use_ffn = use_ffn
|
||||||
|
|
||||||
if use_ffn:
|
|
||||||
nn.init.xavier_uniform_(self.proj[0].weight)
|
|
||||||
nn.init.xavier_uniform_(self.proj[2].weight)
|
|
||||||
|
|
||||||
nn.init.zeros_(self.proj[0].bias)
|
|
||||||
nn.init.zeros_(self.proj[2].bias)
|
|
||||||
elif token_dim != d_model:
|
|
||||||
nn.init.xavier_uniform_(self.proj.weight)
|
|
||||||
nn.init.zeros_(self.proj.bias)
|
|
||||||
|
|
||||||
def forward(self, xi: Tensor, dropout_mask = None, dropout_token = None, stability = None, mode = None ) -> Tensor:
|
def forward(self, xi: Tensor, dropout_mask = None, dropout_token = None, stability = None, mode = None ) -> Tensor:
|
||||||
# empty
|
# empty
|
||||||
if xi.shape[0] == 0:
|
if xi.shape[0] == 0:
|
||||||
|
@ -162,9 +152,6 @@ class FiniteAudioEncoder(nn.Module):
|
||||||
|
|
||||||
if self.level_weights is None:
|
if self.level_weights is None:
|
||||||
x = x.sum(dim=1)
|
x = x.sum(dim=1)
|
||||||
elif stability:
|
|
||||||
weights = F.softmax(self.level_weights.float(), dim=0).view(1, -1, 1)
|
|
||||||
x = (x.float() * weights).sum(dim=1).to(xi.dtype)
|
|
||||||
else:
|
else:
|
||||||
weights = F.softmax(self.level_weights, dim=0).view(1, -1, 1)
|
weights = F.softmax(self.level_weights, dim=0).view(1, -1, 1)
|
||||||
x = (x * weights).sum(dim=1)
|
x = (x * weights).sum(dim=1)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user