add cap for NAR-len training, to avoid any weird cases in early training where it'll just mess up and generate long lengths
This commit is contained in:
parent
4d2b88b164
commit
ab673e0426
|
@ -112,6 +112,7 @@ def run_eval(engines, eval_name, dl):
|
|||
resps_list = engine(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"] )
|
||||
elif "len" in engine.hyper_config.capabilities:
|
||||
len_list = engine(text_list=batch["text"], proms_list=batch["proms"], max_steps=10 ) # don't need more than that
|
||||
len_list = [ min( l, cfg.evaluation.steps ) for l in len_list ]
|
||||
resps_list = engine( text_list=batch["text"], proms_list=batch["proms"], len_list=len_list, max_levels=cfg.evaluation.nar_levels )
|
||||
else:
|
||||
if "ar" in engine.hyper_config.capabilities:
|
||||
|
|
|
@ -127,14 +127,13 @@ def train(
|
|||
engines = load_engines()
|
||||
|
||||
# validate if there's at least one model to train
|
||||
if training:
|
||||
found = False
|
||||
for name, engine in engines.items():
|
||||
if engine.training:
|
||||
found = True
|
||||
break
|
||||
if not found:
|
||||
raise Exception('Training, but no model loaded set to train...')
|
||||
found = False
|
||||
for name, engine in engines.items():
|
||||
if engine.training:
|
||||
found = True
|
||||
break
|
||||
if not found:
|
||||
raise Exception('Training, but no model loaded set to train...')
|
||||
|
||||
"""
|
||||
if is_local_leader():
|
||||
|
|
Loading…
Reference in New Issue
Block a user