remove double spaces in the text phonemes (might have caused problems.........)
This commit is contained in:
parent
47b3077415
commit
b4405c98ea
|
@ -143,9 +143,14 @@ def _get_paths_of_extensions( path, extensions=".qnt.pt", validate=False ):
|
||||||
def _load_quants(path) -> Tensor:
|
def _load_quants(path) -> Tensor:
|
||||||
return torch.load(_get_quant_path(path))[0][:, :].t().to(torch.int16)
|
return torch.load(_get_quant_path(path))[0][:, :].t().to(torch.int16)
|
||||||
|
|
||||||
|
# prune consecutive spaces
|
||||||
|
def _cleanup_phones( phones, targets=[" "]):
|
||||||
|
return [ p for i, p in enumerate(phones) if p not in targets or ( p in targets and p != phones[i-1] ) ]
|
||||||
|
|
||||||
@cache
|
@cache
|
||||||
def _get_phones(path, language="en"):
|
def _get_phones(path, language="en"):
|
||||||
content = open(_get_phone_path(path), "r", encoding="utf-8").read().split(" ")
|
content = open(_get_phone_path(path), "r", encoding="utf-8").read().split(" ")
|
||||||
|
content = _cleanup_phones( content )
|
||||||
return ["<s>"] + [ " " if not p else p for p in content ] + ["</s>"]
|
return ["<s>"] + [ " " if not p else p for p in content ] + ["</s>"]
|
||||||
|
|
||||||
def _interleaved_reorder(l, fn):
|
def _interleaved_reorder(l, fn):
|
||||||
|
@ -333,8 +338,13 @@ class Dataset(_Dataset):
|
||||||
|
|
||||||
if cfg.dataset.use_hdf5:
|
if cfg.dataset.use_hdf5:
|
||||||
key = _get_hdf5_path(path)
|
key = _get_hdf5_path(path)
|
||||||
text = torch.from_numpy(cfg.hdf5[key]["text"][:]).to(self.text_dtype)
|
text = cfg.hdf5[key]["text"][:]
|
||||||
resps = torch.from_numpy(cfg.hdf5[key]["audio"][:, :]).to(torch.int16)
|
resps = cfg.hdf5[key]["audio"][:, :]
|
||||||
|
|
||||||
|
text = np.array( _cleanup_phones( text, targets=[ self.phone_symmap[" "] ] ) )
|
||||||
|
|
||||||
|
text = torch.from_numpy(text).to(self.text_dtype)
|
||||||
|
resps = torch.from_numpy(resps).to(torch.int16)
|
||||||
else:
|
else:
|
||||||
text = torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype)
|
text = torch.tensor([*map(self.phone_symmap.get, _get_phones(path))]).to(self.text_dtype)
|
||||||
resps = _load_quants(path)
|
resps = _load_quants(path)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user