uplifting transformer's WavLM stuff to do speaker verification instead
This commit is contained in:
parent
6468e5d124
commit
b81a98799b
|
@ -67,7 +67,6 @@ def process_batch( tts, inputs, kwargs={} ):
|
||||||
languages=[ x[2] for x in inputs ],
|
languages=[ x[2] for x in inputs ],
|
||||||
out_paths=[ x[3] for x in inputs ],
|
out_paths=[ x[3] for x in inputs ],
|
||||||
)
|
)
|
||||||
|
|
||||||
safe_batched_inference( tts, **kwargs )
|
safe_batched_inference( tts, **kwargs )
|
||||||
|
|
||||||
# Would be downright sugoi if I could incorporate this with into __main__
|
# Would be downright sugoi if I could incorporate this with into __main__
|
||||||
|
@ -136,7 +135,7 @@ def main():
|
||||||
parser.add_argument("--comparison", type=str, default=None)
|
parser.add_argument("--comparison", type=str, default=None)
|
||||||
|
|
||||||
parser.add_argument("--transcription-model", type=str, default="base")
|
parser.add_argument("--transcription-model", type=str, default="base")
|
||||||
parser.add_argument("--speaker-similarity-model", type=str, default="wavlm_base_plus")
|
parser.add_argument("--speaker-similarity-model", type=str, default="microsoft/wavlm-base-sv")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
@ -397,7 +396,7 @@ def main():
|
||||||
total_metrics = (0, 0)
|
total_metrics = (0, 0)
|
||||||
for text, language, out_path, reference_path in tqdm(metrics_inputs, desc="Calculating metrics"):
|
for text, language, out_path, reference_path in tqdm(metrics_inputs, desc="Calculating metrics"):
|
||||||
wer_score, cer_score = wer( out_path, text, language=language, device=tts.device, dtype=tts.dtype, model_name=args.transcription_model )
|
wer_score, cer_score = wer( out_path, text, language=language, device=tts.device, dtype=tts.dtype, model_name=args.transcription_model )
|
||||||
sim_o_score = sim_o( out_path, reference_path, device=tts.device, dtype=tts.dtype, feat_type=args.speaker_similarity_model )
|
sim_o_score = sim_o( out_path, reference_path, device=tts.device, dtype=tts.dtype, model_name=args.speaker_similarity_model )
|
||||||
metrics_map[out_path] = (wer_score, cer_score, sim_o_score)
|
metrics_map[out_path] = (wer_score, cer_score, sim_o_score)
|
||||||
|
|
||||||
# collate entries into HTML
|
# collate entries into HTML
|
||||||
|
|
|
@ -46,29 +46,20 @@ tts = None
|
||||||
|
|
||||||
# this is for computing SIM-O, but can probably technically be used for scoring similar utterances
|
# this is for computing SIM-O, but can probably technically be used for scoring similar utterances
|
||||||
@cache
|
@cache
|
||||||
def _load_sim_model(device="cuda", dtype="float16", feat_type="wavlm_base_plus", feat_dim="auto"):
|
def _load_sim_model(device="cuda", dtype="float16", model_name='microsoft/wavlm-base-sv'):
|
||||||
logging.getLogger('s3prl').setLevel(logging.DEBUG)
|
logging.getLogger('s3prl').setLevel(logging.DEBUG)
|
||||||
logging.getLogger('speechbrain').setLevel(logging.DEBUG)
|
logging.getLogger('speechbrain').setLevel(logging.DEBUG)
|
||||||
|
|
||||||
from ..utils.ext.ecapa_tdnn import ECAPA_TDNN_SMALL
|
#from ..utils.ext.ecapa_tdnn import ECAPA_TDNN_SMALL
|
||||||
|
from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector
|
||||||
|
|
||||||
if feat_dim == "auto":
|
model = WavLMForXVector.from_pretrained(model_name)
|
||||||
if feat_type == "fbank":
|
|
||||||
feat_dim = 40
|
|
||||||
elif feat_type == "wavlm_base_plus":
|
|
||||||
feat_dim = 768
|
|
||||||
elif feat_type == "wavlm_large":
|
|
||||||
feat_dim = 1024
|
|
||||||
elif feat_type == "hubert_large_ll60k":
|
|
||||||
feat_dim = 1024
|
|
||||||
elif feat_type == "wav2vec2_xlsr":
|
|
||||||
feat_dim = 1024
|
|
||||||
|
|
||||||
model = ECAPA_TDNN_SMALL(feat_dim=feat_dim, feat_type=feat_type, config_path=None)
|
|
||||||
model = model.to(device=device, dtype=coerce_dtype(dtype))
|
model = model.to(device=device, dtype=coerce_dtype(dtype))
|
||||||
model = model.eval()
|
model = model.eval()
|
||||||
|
|
||||||
return model
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
||||||
|
|
||||||
|
return model, feature_extractor
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def speaker_similarity_embedding(
|
def speaker_similarity_embedding(
|
||||||
|
@ -78,15 +69,19 @@ def speaker_similarity_embedding(
|
||||||
device = model_kwargs.get("device", "cuda")
|
device = model_kwargs.get("device", "cuda")
|
||||||
dtype = model_kwargs.get("dtype", "float16")
|
dtype = model_kwargs.get("dtype", "float16")
|
||||||
|
|
||||||
model = _load_sim_model(**model_kwargs)
|
model, feature_extractor = _load_sim_model(**model_kwargs)
|
||||||
|
|
||||||
if isinstance(audio, str) or isinstance(audio, Path):
|
if isinstance(audio, str) or isinstance(audio, Path):
|
||||||
audio = load_audio(audio, 16000)
|
audio = load_audio(audio, 16000)
|
||||||
|
|
||||||
audio, sr = audio
|
audio, sr = audio
|
||||||
audio = audio.to(device=device, dtype=coerce_dtype(dtype))
|
features = feature_extractor(audio, return_tensors="pt", sampling_rate=sr)
|
||||||
|
features = features.input_values.squeeze(0).to(dtype=coerce_dtype(dtype), device=device)
|
||||||
return model(audio)
|
|
||||||
|
|
||||||
|
output = model(input_values=features)
|
||||||
|
embeddings = output.embeddings
|
||||||
|
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
|
||||||
|
return embeddings
|
||||||
|
|
||||||
def batch_similar_utterances(
|
def batch_similar_utterances(
|
||||||
speaker_path,
|
speaker_path,
|
||||||
|
|
|
@ -280,7 +280,7 @@ class TTS():
|
||||||
buffer[i].append(x)
|
buffer[i].append(x)
|
||||||
|
|
||||||
# flush
|
# flush
|
||||||
if len(buffer[0]) >= batch_size:
|
if buffer:
|
||||||
batches.append(buffer)
|
batches.append(buffer)
|
||||||
buffer = ([], [], [], [])
|
buffer = ([], [], [], [])
|
||||||
|
|
||||||
|
|
|
@ -10,7 +10,12 @@ import torch.nn.functional as F
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from torcheval.metrics.functional import word_error_rate
|
from torcheval.metrics.functional import word_error_rate
|
||||||
from torchmetrics import CharErrorRate
|
|
||||||
|
# cringe warning message
|
||||||
|
try:
|
||||||
|
from torchmetrics.text import CharErrorRate
|
||||||
|
except Exception as e:
|
||||||
|
from torchmetrics import CharErrorRate
|
||||||
|
|
||||||
def wer( audio, reference, language="auto", normalize=True, phonemize=True, **transcription_kwargs ):
|
def wer( audio, reference, language="auto", normalize=True, phonemize=True, **transcription_kwargs ):
|
||||||
if language == "auto":
|
if language == "auto":
|
||||||
|
@ -45,4 +50,4 @@ def sim_o( audio, reference, **kwargs ):
|
||||||
audio_emb = speaker_similarity_embedding( audio, **kwargs )
|
audio_emb = speaker_similarity_embedding( audio, **kwargs )
|
||||||
reference_emb = speaker_similarity_embedding( reference, **kwargs )
|
reference_emb = speaker_similarity_embedding( reference, **kwargs )
|
||||||
|
|
||||||
return F.cosine_similarity( audio_emb, reference_emb ).item()
|
return F.cosine_similarity( audio_emb, reference_emb, dim=-1 ).item()
|
|
@ -1,468 +0,0 @@
|
||||||
# borrowed with love from "https://github.com/keonlee9420/evaluate-zero-shot-tts/blob/master/src/evaluate_zero_shot_tts/utils/speaker_verification/models/ecapa_tdnn.py"
|
|
||||||
# (which was from https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/ecapa_tdnn.py)
|
|
||||||
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torchaudio.transforms as trans
|
|
||||||
|
|
||||||
#from .utils import UpstreamExpert
|
|
||||||
|
|
||||||
""" Res2Conv1d + BatchNorm1d + ReLU
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class Res2Conv1dReluBn(nn.Module):
|
|
||||||
"""
|
|
||||||
in_channels == out_channels == channels
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
dilation=1,
|
|
||||||
bias=True,
|
|
||||||
scale=4,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
|
||||||
self.scale = scale
|
|
||||||
self.width = channels // scale
|
|
||||||
self.nums = scale if scale == 1 else scale - 1
|
|
||||||
|
|
||||||
self.convs = []
|
|
||||||
self.bns = []
|
|
||||||
for i in range(self.nums):
|
|
||||||
self.convs.append(
|
|
||||||
nn.Conv1d(
|
|
||||||
self.width,
|
|
||||||
self.width,
|
|
||||||
kernel_size,
|
|
||||||
stride,
|
|
||||||
padding,
|
|
||||||
dilation,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
self.bns.append(nn.BatchNorm1d(self.width))
|
|
||||||
self.convs = nn.ModuleList(self.convs)
|
|
||||||
self.bns = nn.ModuleList(self.bns)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = []
|
|
||||||
spx = torch.split(x, self.width, 1)
|
|
||||||
for i in range(self.nums):
|
|
||||||
if i == 0:
|
|
||||||
sp = spx[i]
|
|
||||||
else:
|
|
||||||
sp = sp + spx[i]
|
|
||||||
# Order: conv -> relu -> bn
|
|
||||||
sp = self.convs[i](sp)
|
|
||||||
sp = self.bns[i](F.relu(sp))
|
|
||||||
out.append(sp)
|
|
||||||
if self.scale != 1:
|
|
||||||
out.append(spx[self.nums])
|
|
||||||
out = torch.cat(out, dim=1)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
""" Conv1d + BatchNorm1d + ReLU
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class Conv1dReluBn(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
dilation=1,
|
|
||||||
bias=True,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.conv = nn.Conv1d(
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride,
|
|
||||||
padding,
|
|
||||||
dilation,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
self.bn = nn.BatchNorm1d(out_channels)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.bn(F.relu(self.conv(x)))
|
|
||||||
|
|
||||||
|
|
||||||
""" The SE connection of 1D case.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class SE_Connect(nn.Module):
|
|
||||||
def __init__(self, channels, se_bottleneck_dim=128):
|
|
||||||
super().__init__()
|
|
||||||
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
|
||||||
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out = x.mean(dim=2)
|
|
||||||
out = F.relu(self.linear1(out))
|
|
||||||
out = torch.sigmoid(self.linear2(out))
|
|
||||||
out = x * out.unsqueeze(2)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
""" SE-Res2Block of the ECAPA-TDNN architecture.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
|
||||||
# return nn.Sequential(
|
|
||||||
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
|
||||||
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
|
||||||
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
|
||||||
# SE_Connect(channels)
|
|
||||||
# )
|
|
||||||
|
|
||||||
|
|
||||||
class SE_Res2Block(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride,
|
|
||||||
padding,
|
|
||||||
dilation,
|
|
||||||
scale,
|
|
||||||
se_bottleneck_dim,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.Conv1dReluBn1 = Conv1dReluBn(
|
|
||||||
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
self.Res2Conv1dReluBn = Res2Conv1dReluBn(
|
|
||||||
out_channels, kernel_size, stride, padding, dilation, scale=scale
|
|
||||||
)
|
|
||||||
self.Conv1dReluBn2 = Conv1dReluBn(
|
|
||||||
out_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
||||||
)
|
|
||||||
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
|
||||||
|
|
||||||
self.shortcut = None
|
|
||||||
if in_channels != out_channels:
|
|
||||||
self.shortcut = nn.Conv1d(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
residual = x
|
|
||||||
if self.shortcut:
|
|
||||||
residual = self.shortcut(x)
|
|
||||||
|
|
||||||
x = self.Conv1dReluBn1(x)
|
|
||||||
x = self.Res2Conv1dReluBn(x)
|
|
||||||
x = self.Conv1dReluBn2(x)
|
|
||||||
x = self.SE_Connect(x)
|
|
||||||
|
|
||||||
return x + residual
|
|
||||||
|
|
||||||
|
|
||||||
""" Attentive weighted mean and standard deviation pooling.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class AttentiveStatsPool(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self, in_dim, attention_channels=128, global_context_att=False
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.global_context_att = global_context_att
|
|
||||||
|
|
||||||
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
|
||||||
if global_context_att:
|
|
||||||
self.linear1 = nn.Conv1d(
|
|
||||||
in_dim * 3, attention_channels, kernel_size=1
|
|
||||||
) # equals W and b in the paper
|
|
||||||
else:
|
|
||||||
self.linear1 = nn.Conv1d(
|
|
||||||
in_dim, attention_channels, kernel_size=1
|
|
||||||
) # equals W and b in the paper
|
|
||||||
self.linear2 = nn.Conv1d(
|
|
||||||
attention_channels, in_dim, kernel_size=1
|
|
||||||
) # equals V and k in the paper
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
if self.global_context_att:
|
|
||||||
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
|
||||||
context_std = torch.sqrt(
|
|
||||||
torch.var(x, dim=-1, keepdim=True) + 1e-10
|
|
||||||
).expand_as(x)
|
|
||||||
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
|
||||||
else:
|
|
||||||
x_in = x
|
|
||||||
|
|
||||||
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
|
||||||
alpha = torch.tanh(self.linear1(x_in))
|
|
||||||
# alpha = F.relu(self.linear1(x_in))
|
|
||||||
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
|
||||||
mean = torch.sum(alpha * x, dim=2)
|
|
||||||
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
|
|
||||||
std = torch.sqrt(residuals.clamp(min=1e-9))
|
|
||||||
return torch.cat([mean, std], dim=1)
|
|
||||||
|
|
||||||
|
|
||||||
class ECAPA_TDNN(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
feat_dim=80,
|
|
||||||
channels=512,
|
|
||||||
emb_dim=192,
|
|
||||||
global_context_att=False,
|
|
||||||
feat_type="fbank",
|
|
||||||
sr=16000,
|
|
||||||
feature_selection="hidden_states",
|
|
||||||
update_extract=False,
|
|
||||||
config_path=None,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.feat_type = feat_type
|
|
||||||
self.feature_selection = feature_selection
|
|
||||||
self.update_extract = update_extract
|
|
||||||
self.sr = sr
|
|
||||||
|
|
||||||
if feat_type == "fbank" or feat_type == "mfcc":
|
|
||||||
self.update_extract = False
|
|
||||||
|
|
||||||
win_len = int(sr * 0.025)
|
|
||||||
hop_len = int(sr * 0.01)
|
|
||||||
|
|
||||||
if feat_type == "fbank":
|
|
||||||
self.feature_extract = trans.MelSpectrogram(
|
|
||||||
sample_rate=sr,
|
|
||||||
n_fft=512,
|
|
||||||
win_length=win_len,
|
|
||||||
hop_length=hop_len,
|
|
||||||
f_min=0.0,
|
|
||||||
f_max=sr // 2,
|
|
||||||
pad=0,
|
|
||||||
n_mels=feat_dim,
|
|
||||||
)
|
|
||||||
elif feat_type == "mfcc":
|
|
||||||
melkwargs = {
|
|
||||||
"n_fft": 512,
|
|
||||||
"win_length": win_len,
|
|
||||||
"hop_length": hop_len,
|
|
||||||
"f_min": 0.0,
|
|
||||||
"f_max": sr // 2,
|
|
||||||
"pad": 0,
|
|
||||||
}
|
|
||||||
self.feature_extract = trans.MFCC(
|
|
||||||
sample_rate=sr,
|
|
||||||
n_mfcc=feat_dim,
|
|
||||||
log_mels=False,
|
|
||||||
melkwargs=melkwargs,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
"""
|
|
||||||
if config_path is None:
|
|
||||||
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
|
|
||||||
else:
|
|
||||||
self.feature_extract = UpstreamExpert(config_path)
|
|
||||||
"""
|
|
||||||
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
|
|
||||||
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
|
||||||
self.feature_extract.model.encoder.layers[23].self_attn,
|
|
||||||
"fp32_attention",
|
|
||||||
):
|
|
||||||
self.feature_extract.model.encoder.layers[
|
|
||||||
23
|
|
||||||
].self_attn.fp32_attention = False
|
|
||||||
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
|
||||||
self.feature_extract.model.encoder.layers[11].self_attn,
|
|
||||||
"fp32_attention",
|
|
||||||
):
|
|
||||||
self.feature_extract.model.encoder.layers[
|
|
||||||
11
|
|
||||||
].self_attn.fp32_attention = False
|
|
||||||
|
|
||||||
self.feat_num = self.get_feat_num()
|
|
||||||
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
|
||||||
|
|
||||||
if feat_type != "fbank" and feat_type != "mfcc":
|
|
||||||
freeze_list = [
|
|
||||||
"final_proj",
|
|
||||||
"label_embs_concat",
|
|
||||||
"mask_emb",
|
|
||||||
"project_q",
|
|
||||||
"quantizer",
|
|
||||||
]
|
|
||||||
for name, param in self.feature_extract.named_parameters():
|
|
||||||
for freeze_val in freeze_list:
|
|
||||||
if freeze_val in name:
|
|
||||||
param.requires_grad = False
|
|
||||||
break
|
|
||||||
|
|
||||||
if not self.update_extract:
|
|
||||||
for param in self.feature_extract.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
|
||||||
# self.channels = [channels] * 4 + [channels * 3]
|
|
||||||
self.channels = [channels] * 4 + [1536]
|
|
||||||
|
|
||||||
self.layer1 = Conv1dReluBn(
|
|
||||||
feat_dim, self.channels[0], kernel_size=5, padding=2
|
|
||||||
)
|
|
||||||
self.layer2 = SE_Res2Block(
|
|
||||||
self.channels[0],
|
|
||||||
self.channels[1],
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=2,
|
|
||||||
dilation=2,
|
|
||||||
scale=8,
|
|
||||||
se_bottleneck_dim=128,
|
|
||||||
)
|
|
||||||
self.layer3 = SE_Res2Block(
|
|
||||||
self.channels[1],
|
|
||||||
self.channels[2],
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=3,
|
|
||||||
dilation=3,
|
|
||||||
scale=8,
|
|
||||||
se_bottleneck_dim=128,
|
|
||||||
)
|
|
||||||
self.layer4 = SE_Res2Block(
|
|
||||||
self.channels[2],
|
|
||||||
self.channels[3],
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=4,
|
|
||||||
dilation=4,
|
|
||||||
scale=8,
|
|
||||||
se_bottleneck_dim=128,
|
|
||||||
)
|
|
||||||
|
|
||||||
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
|
||||||
cat_channels = channels * 3
|
|
||||||
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
|
||||||
self.pooling = AttentiveStatsPool(
|
|
||||||
self.channels[-1],
|
|
||||||
attention_channels=128,
|
|
||||||
global_context_att=global_context_att,
|
|
||||||
)
|
|
||||||
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
|
||||||
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
|
||||||
|
|
||||||
def get_feat_num(self):
|
|
||||||
self.feature_extract.eval()
|
|
||||||
wav = [
|
|
||||||
torch.randn(self.sr).to(
|
|
||||||
next(self.feature_extract.parameters()).device
|
|
||||||
)
|
|
||||||
]
|
|
||||||
with torch.no_grad():
|
|
||||||
features = self.feature_extract(wav)
|
|
||||||
select_feature = features[self.feature_selection]
|
|
||||||
if isinstance(select_feature, (list, tuple)):
|
|
||||||
return len(select_feature)
|
|
||||||
else:
|
|
||||||
return 1
|
|
||||||
|
|
||||||
def get_feat(self, x):
|
|
||||||
if self.update_extract:
|
|
||||||
x = self.feature_extract([sample for sample in x])
|
|
||||||
else:
|
|
||||||
with torch.no_grad():
|
|
||||||
if self.feat_type == "fbank" or self.feat_type == "mfcc":
|
|
||||||
x = (
|
|
||||||
self.feature_extract(x) + 1e-6
|
|
||||||
) # B x feat_dim x time_len
|
|
||||||
else:
|
|
||||||
x = self.feature_extract([sample for sample in x])
|
|
||||||
|
|
||||||
if self.feat_type == "fbank":
|
|
||||||
x = x.log()
|
|
||||||
|
|
||||||
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
|
||||||
x = x[self.feature_selection]
|
|
||||||
if isinstance(x, (list, tuple)):
|
|
||||||
x = torch.stack(x, dim=0)
|
|
||||||
else:
|
|
||||||
x = x.unsqueeze(0)
|
|
||||||
norm_weights = (
|
|
||||||
F.softmax(self.feature_weight, dim=-1)
|
|
||||||
.unsqueeze(-1)
|
|
||||||
.unsqueeze(-1)
|
|
||||||
.unsqueeze(-1)
|
|
||||||
)
|
|
||||||
x = (norm_weights * x).sum(dim=0)
|
|
||||||
x = torch.transpose(x, 1, 2) + 1e-6
|
|
||||||
|
|
||||||
x = self.instance_norm(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.get_feat(x)
|
|
||||||
|
|
||||||
out1 = self.layer1(x)
|
|
||||||
out2 = self.layer2(out1)
|
|
||||||
out3 = self.layer3(out2)
|
|
||||||
out4 = self.layer4(out3)
|
|
||||||
|
|
||||||
out = torch.cat([out2, out3, out4], dim=1)
|
|
||||||
out = F.relu(self.conv(out))
|
|
||||||
out = self.bn(self.pooling(out))
|
|
||||||
out = self.linear(out)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
def ECAPA_TDNN_SMALL(
|
|
||||||
feat_dim,
|
|
||||||
emb_dim=256,
|
|
||||||
feat_type="fbank",
|
|
||||||
sr=16000,
|
|
||||||
feature_selection="hidden_states",
|
|
||||||
update_extract=False,
|
|
||||||
config_path=None,
|
|
||||||
):
|
|
||||||
return ECAPA_TDNN(
|
|
||||||
feat_dim=feat_dim,
|
|
||||||
channels=512,
|
|
||||||
emb_dim=emb_dim,
|
|
||||||
feat_type=feat_type,
|
|
||||||
sr=sr,
|
|
||||||
feature_selection=feature_selection,
|
|
||||||
update_extract=update_extract,
|
|
||||||
config_path=config_path,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
x = torch.zeros(2, 32000)
|
|
||||||
model = ECAPA_TDNN_SMALL(
|
|
||||||
feat_dim=768,
|
|
||||||
emb_dim=256,
|
|
||||||
feat_type="hubert_base",
|
|
||||||
feature_selection="hidden_states",
|
|
||||||
update_extract=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
out = model(x)
|
|
||||||
# print(model)
|
|
||||||
print(out.shape)
|
|
Loading…
Reference in New Issue
Block a user